
A COMPUTATIONAL SYSTEM FOR IDENTIFYING
CIS-REGULATORY ELEMENTS IN CLOSELY RELATED

GENOMES

By

Thomas Michael Smith

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: Computer Science

Approved by the
Examining Committee:

Lee A. Newberg, Thesis Adviser

Mukkai S. Krishnamoorthy, Thesis Adviser

Kristin P. Bennett, Member

Joyce H. Diwan, Member

David L. Spooner, Member

Rensselaer Polytechnic Institute
Troy, New York

April 2006
(For Graduation May 2006)

c© Copyright 2006

by

Thomas Michael Smith

All Rights Reserved

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.2.1 Gene Expression . 2

1.2.2 Cis-Regulatory Elements . 3

1.2.3 Phylogenetic Relationships . 3

2 Historical Review 5

2.1 Algorithms for Detecting Cis-Regulatory Elements 5

2.1.1 Early Optimization Algorithms 5

2.1.1.1 The CONSENSUS Algorithm 5

2.1.2 Expectation Maximization Algorithms 6

2.1.2.1 Lawrence & Reilly’s EM Algorithm 6

2.1.2.2 The MEME Algorithm 6

2.1.3 Gibbs Sampling Algorithms 6

2.1.3.1 The Gibbs Site Sampler 6

2.1.3.2 The Gibbs Motif Sampler 7

2.1.3.3 The Gibbs Recursive Sampler 8

2.1.3.4 Other Gibbs Sampling Algorithms 8

2.1.4 Comparison of Algorithms . 8

2.2 Algorithms for Inferring Phylogenetic Relationships 9

2.2.1 Mathematically Modeling Evolution 9

2.2.2 Evolutionary Markov Processes 10

2.2.3 Felsenstein’s Algorithm . 10

2.2.4 Constructing a Phylogenetic Tree 11

2.2.5 Refining Felsenstein’s Algorithm 11

2.2.6 Other Mathematical Models of Evolution 12

2.2.6.1 The Links Model . 12

iii

2.2.6.2 The Tree-HMM Model 12

2.2.6.3 The Extended Links Model 13

2.3 Phylogenetic Algorithms for Discovering Cis-Regulatory Elements . . 13

2.3.1 Optimization Algorithms . 13

2.3.1.1 The PhyloCon Algorithm 13

2.3.2 Expectation Maximization Algorithms 14

2.3.2.1 The OrthoMEME Algorithm 14

2.3.2.2 The EMnEM Algorithm 14

2.3.2.3 The PhyME Algorithm 15

2.3.3 Gibbs Sampling Algorithms 15

2.3.3.1 The CompareProspector Algorithm 15

2.3.3.2 The Li & Wong Algorithm 15

2.3.3.3 The PhyloGibbs Algorithm 16

2.4 Algorithms for Global Sequence Alignment 16

2.4.1 The ClustalW Algorithm . 16

2.4.2 The Wconsensus Algorithm 17

2.4.3 The MultiLAGAN Algorithm 17

2.4.4 The Threaded Blockset Alignment Algorithm 17

3 Challenges for a New Method 18

3.1 Discovering Cis-Regulatory Elements in Closely Related Genomes . . 18

3.2 Analyzing Multiple Genomes Simultaneously 19

3.2.1 Software Design & Development 19

3.2.2 Data Management . 20

4 The Gibbs Phylogenetic Sampler 21

4.1 The Product Phylogeny Model . 21

4.2 The Substitution Model . 22

4.3 Sampling Cis-Regulatory Elements 23

4.3.1 Felsenstein’s Algorithm Revisited 25

4.3.2 Recursive Sampling . 26

4.3.2.1 Sampling Forward Step 26

4.3.2.2 Sampling the Number of Cis-Regulatory Elements . 27

4.3.2.3 Sampling Backward Step 27

4.3.2.4 Sampling Model Update Step 27

4.3.2.5 Run Time Analysis 27

4.3.2.6 Stopping the Sampling Process 28

iv

4.4 Updating the Statistical Model . 28

4.4.1 Sequence Weights . 29

4.5 Evaluating the Predicted Cis-Regulatory Elements 29

5 Bioinformatics Research Application Software System (BRASS) 32

5.1 The System Architecture . 32

5.2 Software Design . 32

5.2.1 Software Design Goals . 34

5.3 BRASS Classes . 34

5.3.1 BRASS::IO . 34

5.3.1.1 Letter (a.k.a. basic Letter) 34

5.3.1.2 AlignedLetter . 35

5.3.1.3 Alphabet . 35

5.3.1.4 AlphabetASCII . 35

5.3.1.5 AlphabetDNA . 35

5.3.1.6 AlphabetRNA . 35

5.3.1.7 AlphabetProtein . 35

5.3.1.8 SequenceData (a.k.a. basic SequenceData) 36

5.3.1.9 Sequence (a.k.a. basic Sequence) 36

5.3.1.10 SequenceAlignment 36

5.3.1.11 SequenceFeature . 36

5.3.1.12 SequenceFeatureSet 36

5.3.1.13 SequenceDataFactory 36

5.3.2 BRASS::Math . 37

5.3.2.1 LocalAlignment . 37

5.3.2.2 SequenceFeatureModel 37

5.3.2.3 SequenceForegroundModel 37

5.3.2.4 MotifProduct . 37

5.3.2.5 MotifColumn . 38

5.3.2.6 MotifColumnMultinomial 38

5.3.2.7 MotifColumnNull . 38

5.3.2.8 MotifColumnPhylogeny 38

5.3.2.9 SequenceBackgroundModel 38

5.3.2.10 BackgroundProduct 39

5.3.2.11 SequenceBackgroundModelUniform 39

5.3.2.12 SequenceBackgroundModelComposition 39

v

5.3.2.13 SequenceBackgroundModelUnified 39

5.3.2.14 SequenceBackgroundModelPhylogenyComposition . . 39

5.3.2.15 SequenceBackgroundModelPhylogenyUnified 40

5.3.2.16 SequenceDataModelFactory 40

5.3.2.17 SequenceDistribution 40

5.3.2.18 SequenceWeights . 40

5.3.2.19 FelsensteinAlgorithm 41

5.3.2.20 FelsensteinTree . 41

5.3.2.21 SubstitutionProcess 41

5.3.2.22 SubstitutionProcessF81 41

5.3.2.23 SequenceDataModel 41

5.3.3 BRASS::Samplers . 42

5.3.3.1 DataModelSampler 42

5.3.3.2 GibbsSiteSampler . 42

5.3.3.3 GibbsRecursiveSampler 42

5.3.3.4 FrequencySolution 42

5.3.3.5 GibbsSampler . 43

5.3.4 BRASS::Trees . 43

5.3.4.1 Tree . 43

5.3.4.2 NewickTree (a.k.a. Tree<NewickTreeNode>) 43

5.3.4.3 FelsensteinTree (a.k.a. Tree<FelsensteinTreeNode>) 43

5.3.4.4 NewickTreeFactory 43

5.3.4.5 NewickTreeInput . 43

5.3.5 BRASS::Util . 43

5.3.5.1 List . 43

5.3.5.2 MultiMap . 44

5.3.5.3 Vector . 44

5.4 Testing & Quality Assurance . 44

5.5 Dependencies . 45

5.6 Supported Platforms . 45

6 BRASS Database System 46

6.1 Planning the System . 46

6.1.1 The Users and Their Needs 46

6.1.2 Existing Data and Tools . 47

6.1.3 Selecting the Database Management System 48

vi

6.2 System Design & Analysis . 48

6.2.1 Perspectives . 48

6.2.2 System Data . 49

6.2.3 Semantic Data Model . 50

6.2.4 Logical Data Model (Database Schema) 51

6.2.5 The Database Management System 51

6.2.6 The User Interface . 51

6.2.7 Application Software and Tools 52

6.3 System Evaluation . 52

6.3.1 Web Interface Prototype . 52

6.4 Technical Documentation . 54

6.4.1 The Tools . 54

6.4.2 The Web Interface Prototype 54

6.5 Summary . 55

7 OrthoGibbs 57

7.1 The OrthoGibbs Application . 57

7.1.1 Input Parameters . 57

7.1.1.1 The orthogibbs Tag 57

7.1.1.2 The sequencedata Tag 58

7.1.1.3 The sequence Tag 59

7.1.1.4 The motif Tag . 59

7.1.1.5 The substitutionprocess Tag 60

7.2 Evaluating Solutions . 60

7.3 Testing OrthoGibbs on Synthetic Data 61

7.3.1 Generating the Data . 61

7.3.2 Running the Experiment . 63

7.3.3 Results . 63

7.4 Testing OrthoGibbs on Real Data . 64

7.4.1 Selecting the Data . 64

7.4.2 Running the Experiment . 65

7.4.3 Results . 65

8 Discussion and Conclusions 68

8.1 Comparison of OrthoGibbs to Other Methods 68

8.2 Benefits of BRASS . 68

8.2.1 Software Framework Benefits 70

vii

8.2.2 Database System Benefits . 70

References 72

A BRASS Supplemental Materials 81

A.1 BRASS UML Diagrams . 81

B BRASS Database System Supplemental Materials 91

B.1 ER Diagrams . 91

B.2 Web Interface Illustrations . 96

viii

List of Tables

7.1 OrthoGibbs Results on Synthetic Positive Control Data 64

7.2 OrthoGibbs Results on Biological Data 67

8.1 Comparison of Algorithms . 69

ix

List of Figures

1.1 Sequence Logo for Cyclic AMP Receptor Protein (Smith, 2003) . . . 4

3.1 A Gamma Proteobacteria Phylogenetic Tree 19

4.1 A Rooted Phylogenetic Tree of Gamma Proteobacteria 25

7.1 Example OrthoGibbs Input . 58

7.2 Phylogenetic Tree of Species in Test Data 62

7.3 Detectable Sites per Intergenic . 66

A.1 BRASS::IO Core Classes . 82

A.2 BRASS::IO Annotation Classes . 83

A.3 BRASS::IO Sequence Classes . 84

A.4 BRASS::Samplers Classes . 85

A.5 BRASS::Math Overview . 86

A.6 BRASS::Math Motif Related Classes 87

A.7 BRASS::Math Background Classes 88

A.8 BRASS::Math Factory & Models . 89

A.9 BRASS::Math Felsenstein Algorithm Classes 90

B.1 Complete Database Schema (Please see detail diagrams B.2, B.3, B.4) 92

B.2 Genome Shared Data Domain Schema 93

B.3 Gibbs Domain Schema . 94

B.4 BMC Domain Schema . 95

B.5 The Prototype Database Query Page 97

B.6 Displaying Intergenic Sequence Data 98

B.7 Searching Gibbs Sampler Reports . 99

B.8 Details of a Gibbs Sampler Report 100

B.9 Details of a Motif . 101

B.10 Details of Transcription Factor Binding Site Predictions 102

x

Acknowledgments

The author would like to thank Professors Newberg and Krishnamoorthy for valuable

assistance with both coursework and research over the past several years. The author

would also like to thank Prof. William Thompson of Brown University, Dr. Lee Ann

McCue of Pacific Northwest National Laboratory, and Dr. Sean Conlan of Columbia

University. The author would finally like to thank Prof. Charles “Chip” Lawrence

(currently at Brown University) for supporting this work and helping to create the

pioneering Computational Molecular Biology curriculum within the Computer Science

Department at Rensselaer Polytechnic Institute.

The author additionally thanks the Computational Molecular Biology and Statis-

tics Core of the New York State Department of Health Wadsworth Center for Labo-

ratories and Research for the use of their computer cluster.

xi

Abstract

Scientists are only beginning to develop methods for whole genome comparisons.

Computational methods which do not incorporate evolutionary relationships in their

models are inadequate when there is high correlation between the DNA sequence data

from closely related species. New genomes from various species are often sequenced

specifically because of their relationships to other species as researchers wish to learn

how species are differentiated at the DNA sequence level.

Current methods do not provide a computational platform for efficiently analyzing

data from many genomes simultaneously. Genomic scale analysis tends to result in

hundreds of thousands of files across gigabytes of disk space with much redundancy.

As the library of complete genomes grows, researchers will analyze larger sets of more

complex genomes. A software system which scales to facilitate these multiple genome

analyses will be necessary.

This thesis aims to provide a computational system for identifying cis-regulatory

elements in closely related genomes. As a demonstration, an analysis of cis-regulatory

elements in E. coli and related bacterial genomes is provided. Previous computational

methods for such an analysis are somewhat ineffective because the species are closely

related. This closeness causes statistical problems due to the high correlation between

the sequence data in the genomes.

Methods for discovering potential cis-regulatory elements from DNA sequence

data are reviewed, and a new Gibbs Sampling method is provided to address the

correlation problem by accounting for evolutionary distances between species. A new

software system is also shown to provide a computational platform necessary for more

complex, collaborative analyses in the future.

The software framework provides an object-oriented representation for the Gibbs

Phylogenetic Sampler and generically lays the groundwork to accommodate other sta-

tistical bioinformatics applications. Many sampling strategies, biological data struc-

tures, and mathematical models may be shared between various analysis applications.

On synthetic data, the new Gibbs Sampling method demonstrates greater positive

predictive value and significantly greater specificity than other, comparable methods.

On real data, the new method also produces encouraging results. A comparison of

features between this and other methods is also provided.

xii

Chapter 1

Introduction

1.1 Motivation

Researchers wish to study closely related genomes. For example, seven genomes

from the Shewanella genus have recently been sequenced (Heidelberg et al., 2002),

and several more are currently being considered for sequencing. Shewanella bacteria

have the unusual ability to reduce metal contaminants (Nealson & Little, 1997), so

they may be useful for bioremediation (Lovley & Lloyd, 2000). In particular, the

United States Department of Energy is interested in using such microbes to clean

up contaminated sites. Since Shewanella are members of the gamma proteobacteria

class, several slightly more evolutionarily distant genomes are already available for

computational comparison; however, none of the other gamma proteobacteria can

reduce metals, so very few inferences about the genetics behind this ability can be

made.

Scientists are only beginning to develop methods for whole genome comparisons.

Gene expression, which will be discussed in further detail in section 1.2.1, is an area

of great interest for such comparisons. Computational methods which do not incor-

porate evolutionary relationships in their models are inadequate when there is high

correlation between the DNA sequence data from the various species. This does not

appear to be a significant problem for species separated at the class level taxonom-

ically, but it has been shown to be a problem at the family level with at least one

method (McCue et al., 2002). Since Shewanella bacteria are all in the same genus

(which is more specific than family), high correlation between their sequence data is

expected. Current methods do not adequately account for this correlation.

Additionally, current methods do not provide a computational platform for effi-

ciently analyzing data from many genomes simultaneously. Genomic scale analysis

1

tends to result in hundreds of thousands of files across gigabytes of disk space with

much redundancy. With cluster computing, much of this redundant information is

also transmitted over a local area network. Aside from the computational inefficiency

of such a system, the process and final results are often difficult for humans to inter-

pret or reproduce. As the library of complete genomes grows, researchers will analyze

larger sets of more complex genomes. For example, the “Zoo Project” (Thomas et al.,

2003) is expected to promote the significantly larger analysis of mammalian genomes.

Such projects require scaling from the analysis of millions of positions in DNA se-

quences to the analysis of billions. A software system which scales to facilitate these

multiple genome analyses will be necessary.

1.2 Background

1.2.1 Gene Expression

A gene is a piece of a DNA molecule which encodes a segment of RNA or instructions

for creating a protein. Gene expression is the process of creating proteins within a

cell. The set of proteins within a cell is of fundamental importance to cell function and

differentiation. Gene expression begins with the transcription of a gene to messenger

RNA, continues through translation of messenger RNA to a polypeptide, and ends

with the folding of one or more polypeptides into a protein.

Transcription is the process in which an RNA Polymerase protein synthesizes mes-

senger RNA from template DNA. RNA Polymerase begins by binding to the DNA

upstream of the gene to be transcribed. The region of DNA where RNA Polymerase

binds is known as the promoter. RNA Polymerase moves along the template DNA

from the promoter across the length of the gene, assembling a complementary mes-

senger RNA molecule.

Transcription regulation is one of the most important mechanisms for determining

if a gene will be expressed. Transcription factors are proteins which regulate the

transcription of DNA to messenger RNA by binding to the DNA molecule, usually

upstream of the gene to be transcribed. The region of DNA where transcription

factors bind is known as the intergenic region because it is located between genes.

The presence or absence of these transcription factors affects the ability of RNA

Polymerase to bind to the promoter and initiate transcription. The classic example

of regulation of the lac operon illustrates this (Jacob & Monod, 1961).

Please see Genes (Lewin, 2000), Molecular Biology of the Cell (Alberts et al.,

2

2002), or Biochemistry (Voet & Voet, 2004) for more details on gene expression.

1.2.2 Cis-Regulatory Elements

The DNA binding sites of transcription factors, known as cis-regulatory elements,

are characterized by common, subtle patterns (or motifs) of nucleotides shared by all

sites to which a given transcription factor may bind. The method by which a protein

recognizes its binding site is not well understood, and this makes it difficult to predict

which proteins could bind to a particular segment of DNA (Pabo & Sauer, 1984). It

has been shown that there is no simple “recognition code” which maps the binding

of amino acids in proteins to corresponding nucleotides in DNA (Matthews, 1988);

however, it is possible to determine probabilistic recognition codes for high-affinity

binding interactions by analyzing experimental binding data(Benos et al., 2002).

High throughput experiments to test for transcription factor binding in vitro are

difficult due to the combinatorial problem of selecting transcription factors, poten-

tial binding regions, and environmental binding conditions. Since there is no simple

recognition code, and experimental binding data across an entire genome is difficult

to collect, we focus on the DNA sequence alone. Specifically, we focus on sequences

which may be regulated by the same transcription factor. If multiple sequences ac-

tually do bind the same factor, there is likely to be a common subsequence. This

common subsequence will not be exactly the same in each sequence, so transcription

factor binding sites are often probabilistically modeled as a product multinomial dis-

tribution, which may also be represented by a position weight matrix. This matrix

contains the probability of each nucleotide at each position in the sequence of the

binding site, with the assumption that the distributions at each position are statis-

tically independent. It is also convenient to represent a motif visually as a sequence

logo (Schneider & Stephens, 1990). The sequence logo also accounts for information

content at each position, which will be discussed briefly in section 2.1.1.1. Please see

figure 1.1 for an example sequence logo.

1.2.3 Phylogenetic Relationships

Evolutionary relationships between species are called phylogenetic relationships. Fun-

damentally, these relationships measure the time between speciation events where

ancestral species split into distinct descendant species. These relationships are evi-

dent in the taxonomic classification system. Before nucleic acids could be sequenced,

phylogenetic relationships were inferred by observing different quantitative and qual-

3

Figure 1.1: Sequence Logo for Cyclic AMP Receptor Protein (Smith, 2003)

itative characteristics between species and classifying them. For plants and animals,

morphological characteristics could be used. For bacteria, a series of laboratory tests

was established to aid in classification (Holt, 1994). The fossil record was also useful

for inferring a time line for phylogenetic relationships between non-bacterial species.

Classification alone is not precise enough to develop a clear picture of evolution,

so scientists began to focus on genetic sequences (Zuckerkandl & Pauling, 1965).

Specifically, 16S ribosomal RNA (rRNA) genes became the molecules of choice for

phylogenetic analysis (Woese et al., 1975; Woese & Fox, 1977). 16S rRNA genes

exist in all organisms, are long enough to contain a reasonable amount of historical

information, and have a very slow rate of change over time. These properties make

16S rRNA genes ideal candidates for analysis to infer phylogenetic relationships (Fox

et al., 1980; Olsen et al., 1994). An on-line database cataloging over 97,000 (updated

since publication) bacterial 16S rRNA gene sequences has been created for the study

of phylogeny (Cole et al., 2003). Computational methods can be applied to these

sequences to create trees such as the one in figure 3.1. Intuitively, but not precisely,

the distances between the leaves of the tree represent time. Unrooted trees are often

used because of ambiguity in the time line which will be discussed in section 2.2.3.

Mathematically, the distances are proportional to the expected number of substitu-

tions per 16S rRNA gene sequence position between the species under an assumed

model.

4

Chapter 2

Historical Review

2.1 Algorithms for Detecting Cis-Regulatory Ele-

ments

Several approaches have been taken to develop local multiple alignment algorithms to

discover both motifs and binding sites (cis-regulatory elements, instances of motifs)

from sequence data. Given several sequences which are believed to contain the same

cis-regulatory element, a local multiple alignment algorithm attempts to find similar

DNA subsequences by shifting one or more windows in each sequence back and forth

across the sequence and evaluating the similarity of the subsequences contained in

the windows. Simple string search algorithms are ineffective due to variability at

each nucleotide position in a cis-regulatory element, so mathematical optimization

methods are necessary.

2.1.1 Early Optimization Algorithms

2.1.1.1 The CONSENSUS Algorithm

The first notable local multiple alignment algorithm was developed by Stormo and

Hartzell in 1989 (Stormo & Hartzell, 1989). Called CONSENSUS, their algorithm

maximizes the information content of potential cis-regulatory elements. In this case,

information content is proportional to the logarithm (base 2) of the ratio of the

observed nucleotide frequencies to their frequency throughout a whole genome. The

algorithm begins by assuming that any subsequence of a given length in the first

sequence may be a binding site. A position weight matrix is created for each site, and

a value of 1 is assigned to nucleotides present at each position, with values of 0 for the

5

rest. Another sequence in examined, and all of its subsequences of the given length

are compared to the matrices. Various heuristics to maximize information content are

used to update the matrices by adding the nucleotides present in the new sequence.

This process is repeated until all of the sequences have been used. The CONSENSUS

algorithm has since been refined to allow gaps in motifs (Hertz & Stormo, 1994) and

evaluate statistical significance of potential binding sites (Hertz & Stormo, 1999).

2.1.2 Expectation Maximization Algorithms

2.1.2.1 Lawrence & Reilly’s EM Algorithm

Early statistical methods used expectation maximization (EM) techniques. Lawrence

and Reilly’s EM algorithm (Lawrence & Reilly, 1990) begins with a random product

multinomial distribution for a motif. Given this distribution, the algorithm calculates

the probability of a binding site beginning at each position in each sequence. These

probabilities are used as weights for calculating the expected value for the nucleotide

distributions in the motif. The algorithm selects binding sites which maximize the

likelihood of the population distribution by iterating this process until the expected

values stabilize.

2.1.2.2 The MEME Algorithm

In 1994, Bailey and Elkan developed an expectation maximization algorithm known

as MEME (Bailey & Elkan, 1994). The MEME algorithm is similar to Lawrence and

Reilly’s EM algorithm, but it removes the constraint of requiring exactly one site per

sequence. Instead of focusing on just the product multinomial motif, MEME uses a

mixture distribution where it also estimates the most likely background as a single

multinomial distribution and the probability that a position follows the background

distribution or the motif distribution.

2.1.3 Gibbs Sampling Algorithms

2.1.3.1 The Gibbs Site Sampler

Newer methods use Gibbs Sampling algorithms, and they have been shown to be

quite effective. In 1993, a Gibbs Sampling algorithm was developed to discover a

single motif and its corresponding instances (sites) in a set of sequences (Lawrence

et al., 1993). Each sequence is assumed to have exactly one site. This algorithm is

known as the Gibbs Site Sampler. The probabilities are calculated almost identically

6

as in the Lawrence and Reilly EM algorithm, except that they are not directly used

to compute the motif position distributions. Instead, the algorithm cycles through

the sequences individually, removes the site from each sequence, and samples in a new

site for that sequence given the current motif distribution. The motif distribution is

determined by the current set of sites in all of the other sequences, so the new site is

effectively sampled from a conditional distribution. This conditional distribution is

the probability of the data given the alignment. Unlike the EM algorithm, the Gibbs

Sampler is more likely to explore a larger portion of the sample/parameter space

because it does not always follow a direct path to a maximum likelihood estimate.

EM algorithms have a tendency to find local maxima rather than global maxima. At

the end of Gibbs Sampling, the motif and sampled sites which maximize a statistic

quite similar to the information content of the CONSENSUS algorithm are taken as

the solution.

2.1.3.2 The Gibbs Motif Sampler

In 1995, the Gibbs Site Sampler algorithm was extended to allow for multiple motifs,

multiple sites per sequence, and gaps in motifs (Liu et al., 1995; Neuwald et al., 1995).

This incarnation is known as the Gibbs Motif Sampler. Mathematically, the Gibbs

Motif Sampler treats all of the sequences as one very long sequence. Each position

in the long sequence fits either a motif distribution or the background distribution.

This model is similar to the model employed by the MEME algorithm, but it does

not impose the constraint of a single motif distribution. At each position, the proba-

bilities that the position belongs to the background model or begins a site belonging

to a motif model are calculated, and one of these models is sampled and updated

accordingly. Once again, these conditional probabilities are the probabilities of the

data given the current alignment. If a position already contains the start of a site,

the algorithm removes the site from its motif before performing the sampling. The

Gibbs Motif Sampler algorithm also allows gaps, or unconserved positions, in a motif

by incorporating a “fragmentation” model. The fragmentation model assumes that a

motif has positions which may be turned on or off. Positions which are off do not

contribute to the product multinomial probabilities. Positions are turned on and off

by another Gibbs Sampling strategy to explore several fragmentation distributions.

Finally, the Gibbs Motif Sampler also introduced a method for probabilistically eval-

uating the complete alignment, accounting for the distribution at every position in

the input data. This evaluation is the a posteriori probability. Essentially, this prob-

ability represents the probability of the alignments given the data. This is calculated

7

by applying Bayes’s Rule to the conditional distributions used in the main sampling

step. The maximum a posteriori probability, also known as the “MAP”, discovered

during the alignment sampling process is taken as the best solution.

2.1.3.3 The Gibbs Recursive Sampler

In 1999, Liu, Neuwald, and Lawrence laid the groundwork for a more robust Gibbs

Sampler (Liu et al., 1999). Known as the Gibbs Recursive Sampler, this new algorithm

outlined a“propagation model”in which information about the conditional probability

distributions is recursively propagated to allow for efficient sampling. Given the sites

in all sequences but the current one, the algorithm will sample sites in the current

sequence. Assuming we know the number of sites that we want to sample in the

current sequence, the algorithm calculates the probability that the first site (of any

motif type) starts in each position. After the first pass, the algorithm repeats to

calculate the probability that the second site begins in any allowable position, given

the location of the first site. The algorithm continues to propagate these conditional

probabilities until they have been enumerated for all possible site placements. The

algorithm then samples in the reverse order, beginning by sampling the last site (and

its corresponding motif), and proceeding until it samples the first site. The advantage

of this algorithm is that it allows the statistical model to include information about

the spacing between sites and the linear ordering of sites by motif type. For example,

the algorithm can specify probabilities for scenarios such as “a site of motif type A

is between two sites of motif type B” (Thompson et al., 2004). The implementation

of the Gibbs Recursive Sampler was also enhanced with the ability to sample the

number of sites to be sampled from a given sequence, a necessary feature (Thompson

et al., 2003).

2.1.3.4 Other Gibbs Sampling Algorithms

BioProspector (Liu et al., 2001) and AlignACE (Roth et al., 1998) are alternative

implementations of the Gibbs Motif Sampler.

2.1.4 Comparison of Algorithms

In 2000, Workman and Stormo introduced a neural network algorithm called ANN-

SPEC for motif discovery and performed a quantitative comparison between ANN-

SPEC, the Gibbs Site Sampler, CONSENSUS, and MEME (Workman & Stormo,

8

2000). Their comparison is interesting because it highlights the importance of a ro-

bust model for the sequence background composition. They concluded that both

ANN-SPEC and the Gibbs Sampler outperform CONSENSUS and MEME when se-

quence background composition is random. When they constructed a data set with

non-random background composition, ANN-SPEC outperformed the Gibbs Sampler.

The authors noted that their version of the Gibbs Sampler was unable to learn the

background distribution. This has been addressed by allowing the Gibbs Sampler to

use sequence and position specific background models (Liu & Lawrence, 1999).

2.2 Algorithms for Inferring Phylogenetic Relation-

ships

There are several algorithms to infer phylogenetic relationships between species from

sequence data. Since we will primarily be concerned with computing probabilities of

DNA sequence data given a tree, we will focus on that aspect of these algorithms. It

is important to remember that constructing the tree, determining its topology and

branch lengths, is another very important problem which will only be briefly addressed

here.

2.2.1 Mathematically Modeling Evolution

Jukes and Cantor proposed one of the earliest nucleotide substitution models for

phylogeny (Jukes & Cantor, 1969). Their model assumed that all nucleotides in a

DNA sequence were equally likely to mutate, and nucleotides mutated to any other

nucleotide with equally likely probabilities. It is very useful to represent this as a

transition rate matrix. The Jukes & Cantor transition rate matrix is:

−1 1

3
1
3

1
3

1
3
−1 1

3
1
3

1
3

1
3
−1 1

3
1
3

1
3

1
3
−1

 (2.1)

In equation 2.1, the rows represent an existing nucleotide, and the columns represent

the nucleotides to which it may mutate. The numbers where the rows and columns

intersect are the probabilities of that mutation. The number along the diagonals en-

sure that each row sums to 0. A rate matrix can be used to compute a transition

matrix, as shown in section 4.2. Transition matrices in phylogeny are also referred

9

to as substitution matrices. Mathematically, this model is useful because these ma-

trices represent a stationary Markov process which can be manipulated to simulate

change over time and to allow the nucleotide composition of sequences to converge

to reasonable values. After infinite time, given the rate matrix above, the sequence

composition is expected to be uniformly random.

2.2.2 Evolutionary Markov Processes

As stated earlier, evolution is mathematically considered a stationary Markov process,

which means that the probability of a nucleotide mutating is only dependent on its

present state. The four types of nucleotides in DNA are considered the state of

the nucleotide. Given infinite time, the nucleotides will converge to an equilibrium

distribution because the process is stationary and irreducible. 16S rRNA genes change

very little over time, so it is reasonably safe to assume that their sequences are near

an equilibrium distribution. The same is also true for any other highly conserved

sequence, such as the DNA binding sequence for a transcription factor.

Another interesting aspect of Jukes & Cantor’s substitution matrix is that it is

reversible. Time can flow forward or backward to converge on the equilibrium distri-

bution, which implies we cannot distinguish ancestors from descendants. Lanave et al.

explored these reversible substitution processes to develop a method for determining

the rate of mutation (Lanave et al., 1984). They also defined evolutionary distance

as the expected number of mutations per sequence position between two sequences.

Later, Yang showed that reversible substitution matrices generally provided the best

models (Yang, 1994a).

2.2.3 Felsenstein’s Algorithm

While investigating phylogenetic inference using amino acid sequences, Neyman pro-

posed a similar, reversible substitution mechanism which could be used with a maxi-

mum likelihood (ML) approach to predict the most likely phylogenetic tree (Neyman,

1971). Specifically, Neyman illustrated how to develop a probabilistic model for three

species. Felsenstein extended this model to a tree with an arbitrary number of species

and provided an algorithm for finding the most likely tree (Felsenstein, 1981).

Felsenstein’s Algorithm is based on the ability to compute the likelihood of ob-

served nucleotide sequences given a phylogenetic tree. Felsenstein assumed that the

equilibrium distribution of nucleotides will be the prior probabilities of each type of

nucleotide, which may be estimated from the overall nucleotide composition of the

10

sequences. With this knowledge, one can calculate the likelihood of the sequence data

given the tree with a post-order tree traversal. This traversal starts at the leaves of the

tree and builds up to the root. The post-order tree traversal greatly simplifies com-

putation, and it is generic enough to work with a variety of other assumptions about

the equilibrium distribution. More details of the actual computation are provided in

section 4.3.1.

Felsenstein also showed that the position of the root in the tree is actually not

important under this reversible Markov process model. Indeed, the flexibility to

position the root allows an efficient optimization algorithm for constructing the tree.

2.2.4 Constructing a Phylogenetic Tree

To begin constructing a phylogenetic tree, we need a topology. Felsenstein calculates

that there are (2n−5)!
(n−3)!2n−3 possible unrooted trees (Felsenstein, 1981). Obviously, an

exhaustive search algorithm is not feasible. Felsenstein proposes the relatively simple

search strategy of examining the placement of species on the tree in successive order.

Starting with a tree of (n − 1) species, the algorithm looks at all 2n − 5 possible

ways to add the nth species. One at a time, each branch length is adjusted to locally

maximize the likelihood of the tree. The likelihood of the tree is calculated for each

way, and the topology with the maximum likelihood is taken. The process is repeated

until all species are on the tree. Since the order of adding species to the tree affects

the topology, it may be worthwhile to explore several different orderings. Felsenstein

claims that the topology will be identical for “extremely self-consistent data.” This

greedy algorithm does not guarantee that the most likely topology or tree will be

found, but it produces good results.

2.2.5 Refining Felsenstein’s Algorithm

DNA nucleotides are classified as either purines or pyrimidines ; adenine and guanine

are purines, and thymine and cytosine are pyrimidines. Mutations in DNA can be clas-

sified as either transitions or transversions. Transitions occur when a purine mutates

to the other purine or a pyrimidine mutates to the other pyrimidine. Transversions

occur when a purine mutates to a pyrimidine or a pyrimidine mutates to a purine.

This distinction is important in phylogeny because transitions are more likely to occur

naturally than transversions. Kimura proposed extending the substitution model of

Jukes and Cantor to account for this (Kimura, 1980). Kimura added two parameters

to the model: the rate of occurrence per unit of time for transitions and the rate for

11

transversions. Later, Hasegawa, Kishino, and Yano added these parameters to the

model in Felsenstein’s algorithm (Hasegawa et al., 1985).

Several years later, Yang explored removing the assumption that all positions in

sequence data evolve at the same rate over time. Yang discovered that a gamma dis-

tribution modeled the rates well, but the computational overhead was quite expensive

(Yang, 1993). To improve performance, Yang used a discrete approximation of the

gamma distribution (Yang, 1994b). Yang’s approximation equally divided the gamma

distribution into a fixed number of rates with equal probability. The mean of each

region was chosen as the rate for that region of the distribution. This method was

useful and performed well, but it did not account for correlation between rates of evo-

lution at adjacent sequence positions. Yang approached the correlation problem by

using Hidden Markov Models (Yang, 1995). Independently, Felsenstein and Churchill

developed another Hidden Markov Model approach (Felsenstein & Churchill, 1996).

For an overview of these and other methods, please see Felsenstein’s review article

(Felsenstein, 2001) or Inferring Phylogenies (Felsenstein, 2003).

2.2.6 Other Mathematical Models of Evolution

2.2.6.1 The Links Model

Thorne, Kishino, and Felsenstein also explored the application of phylogeny to the

alignment of two sequences (Thorne et al., 1991). They imagined sequences as con-

taining links from one nucleotide to the next. These links were subject to a statistical

birth-death process which would cause insertions or deletions in the sequence. Since

there is no way to differentiate an insertion from a deletion between two sequences,

insertion/deletion events are called indels. Individual nucleotides are also subject

to Felsenstein’s earlier substitution process (Felsenstein, 1981). This model became

known as the links model, and Thorne, Kishino, and Felsenstein later generalized it

to model groups of nucleotides as fragments of various sizes with varying evolutionary

rates (Thorne et al., 1992).

2.2.6.2 The Tree-HMM Model

Mitchison and Durbin added Hidden Markov Models (HMM) to the assortment of

tools for handling insertions and deletions (Mitchison & Durbin, 1995). They called

their model Tree-HMM, and instead of having only substitution matrices for nu-

cleotides as Felsenstein did (Felsenstein, 1981), they constructed both substitution

matrices and separate transition matrices for states of matching nucleotides, inser-

12

tion of nucleotides, and deletion of nucleotides. They use a dynamic programming

algorithm for sequence alignment and a maximum likelihood procedure to fit the

alignment and HMM to the tree. In a later paper, Mitchison used Bayesian sampling

to simultaneously discover both the tree and alignment (Mitchison, 1999).

2.2.6.3 The Extended Links Model

Holmes and Bruno developed another Bayesian approach to phylogeny leveraging the

links model (Holmes & Bruno, 2001). Conditioning on a phylogenetic tree, they

extended the links model to sample alignments from multiple sequences (as opposed

to only two sequences). Holmes and Bruno also discussed the merits of the links and

Tree-HMM models and suggested attempting to fuse the two models in the future.

2.3 Phylogenetic Algorithms for Discovering Cis-

Regulatory Elements

Recently, new algorithms to discover cis-regulatory elements with the aid of phy-

logenetic information have been developed. These algorithms employ a variety of

approaches, including optimization, expectation maximization, and Gibbs Sampling.

Many of these algorithms are extensions of earlier, non-phylogenetic incarnations.

2.3.1 Optimization Algorithms

2.3.1.1 The PhyloCon Algorithm

The PhyloCon algorithm (Wang & Stormo, 2003b) by Wang and Stormo is an ex-

tension of the CONSENSUS algorithm (see section 2.1.1). The goal for PhyloCon

was to account for conservation of cis-regulatory elements across orthologs from re-

lated genomes, while the original CONSENSUS algorithm was intended to be used on

cis-regulatory elements conserved near co-regulated genes in the same species. Phylo-

Con begins by aligning orthologs using WCONSENSUS (see section 2.4) to produce

“profiles”. These profiles contain the frequencies of observations of each nucleotide

at each position in the alignment of multiple species for a single, orthologous gene.

Wconsensus produces suboptimal alignments which are useful for the second step of

the algorithm, comparing the profiles. The profiles from regions near genes which

are hypothesized or known to be co-regulated are compared in a pairwise fashion via

13

another alignment step. Instead of aligning sequence observations, the frequency dis-

tributions are aligned. Profile alignments are scored using an “average log likelihood

ratio” statistic, which is somewhat similar to the information content score used in the

original CONSENSUS algorithm. The final step is a greedy algorithm which repeat-

edly merges pairs of profiles with the highest average log likelihood ratio, discarding

pairs below some threshold.

2.3.2 Expectation Maximization Algorithms

2.3.2.1 The OrthoMEME Algorithm

The OrthoMEME algorithm (Prakash et al., 2004) by Prakash et al. is an extension

of Bailey and Elkan’s MEME algorithm (see section 2.1.2. OrthoMEME operates

on sets of orthologs from a pair of related species. For example, these sets should

be regions upstream of potentially co-regulated genes with orthologs between two

species. OrthoMEME only searches for one motif, but it may find zero or more

instances of the motif in each pair of orthologs. The parameters for a motif are a

traditional position weight matrix, as well as transition probability matrices for each

position in the motif. There is also a parameter for the expected number of motif

occurrences. The expectation step computes the probability of a motif occurring

at each position under the model, while the maximization step updates the model

parameters to maximize the likelihood of the data under the model.

2.3.2.2 The EMnEM Algorithm

The EMnEM (Expectation-Maximization on Evolutionary Mixtures (Moses et al.,

2004)) algorithm by Moses et al. is another extension of the MEME algorithm (see

section 2.1). EMnEM operates on aligned orthologs from an arbitrary number of

species. EMnEM views this as a sort of collapsed sequence. The probability model

for the data is a mixture of two evolutionary models: one for a motif, and one for back-

ground. Regions of the sequence belong to either of these models. The evolutionary

models are Markov processes of nucleotide substitution, as discussed in section 2.2.

EMnEM uses the nucleotide substitution matrix of Jukes & Cantor (see section 2.2.1)

with Felsenstein’s Algorithm (see section 2.2.3) and a phylogenetic tree to evaluate

the model.

14

2.3.2.3 The PhyME Algorithm

Unlike OrthoMEME and EMnEM, the PhyME algorithm (Phylogenetic Motif Elicita-

tion (Wang & Stormo, 2003a)) by Sinha et al. is not best described as an extension of

MEME. PhyME uses expectation-maximization, but it is not very similar to MEME,

OrthoMEME, or EMnEM. The probability model in PhyME integrates two aspects

of a cis-regulatory element: conservation across species (in orthologs) and overrepre-

sentation within a species (in co-regulated genes). PhyME begins by attempting to

align as many regions as possible from all of the input sequences using the MultiLA-

GAN algorithm (see section 2.4). The result is a set of conserved “blocks” of sequence

between each species and a special reference species. All regions of sequence not con-

tained in these blocks are considered unconserved between the species. The sequences

are assumed to have been produced by a Hidden Markov Model parameterized by a

motif position weight matrix and a background weight matrix. Subsequences which

are sampled from the motif weight matrix in aligned blocks are drawn from the evo-

lutionary model of Felsenstein’s Algorithm. The expectation-maximization trains the

parameters of the weight matrices.

2.3.3 Gibbs Sampling Algorithms

2.3.3.1 The CompareProspector Algorithm

CompareProspector (Liu et al., 2004) is an extension of BioProspector (see section

2.1.3.4) by Liu et al. which biases sampling to conserved regions. Before sampling,

input sequences are aligned with LAGAN (see section 2.4), and a “window percent

identity” (WPID) is computed for all subsequences sharing the length of the target

motif. The Gibbs Sampler only samples sites at locations where the WPID is greater

than a certain threshold. Site probabilities are also weighted by the WPID.

2.3.3.2 The Li & Wong Algorithm

The Li & Wong algorithm (Li & Wong, 2005) is an extension of the Gibbs Site

Sampler (see section 2.1.3.1). This algorithm uses Felsenstein’s model of evolution (see

section 2.2.3) and assumes that background sequences evolve at a greater rate than

regulatory sequences. Substitution matrices are inferred from the maximum likelihood

phylogenetic tree for the species of interest. Ancestral cis-regulatory elements are

assumed to have been drawn from a product multinomial motif, and descendants

are assumed to have evolved from this motif through a Markov chain which follows

15

Felsenstein’s model of evolution. The sampler updates the ancestral motif to infer

its position weight matrix, and then the sampler updates the cis-regulatory elements

in the observed sequence data in accordance with the ancestral motif and the model

of evolution. This algorithm also samples elements of various widths, but does not

handle insertions, deletions, or gaps.

2.3.3.3 The PhyloGibbs Algorithm

The PhyloGibbs algorithm (Siddharthan et al., 2005) by Siddharthan et al. is very

similar to PhyME, but with several key differences. The most significant differ-

ence is that PhyloGibbs uses a Gibbs Sampling approach instead of expectation-

maximization. This approach allows PhyloGibbs to search for multiple motifs and

multiple cis-regulatory elements in each sequence. PhyloGibbs uses the same model

of evolution as PhyME, but it restricts itself to a star topology for the phylogenetic

tree.

2.4 Algorithms for Global Sequence Alignment

Many of the phylogenetic algorithms discussed in section 2.3 require their input se-

quences to be aligned. Since all of these algorithms perform “local alignment” of

cis-regulatory elements, this earlier alignment step may be referred to as “global

alignment” of the sequences including the cis-regulatory elements. There are many

global alignment algorithms, but only the ones reported to have been used with the

algorithms in section 2.3 are reviewed here.

2.4.1 The ClustalW Algorithm

ClustalW (Chenna et al., 2003) is one of the oldest and most respected global align-

ment algorithms. ClustalW is particularly favored because it produces reasonable

alignments without requiring the user to tune its parameters. ClustalW begins by

performing pairwise alignments for all pairs of sequences to be aligned. The pairwise

alignments attempt to minimize the number of mismatches between the sequences.

The algorithm then calculates distances between pairs by counting the numbers of

mismatches in non-gap positions. These distances form a matrix, and ClustalW uses

a neighbor-joining algorithm (hierarchical clustering) to construct a “similarity tree”,

which is similar to a phylogenetic tree. ClustalW finally uses the tree to combine

(align) the closest alignments until one global alignment is achieved.

16

2.4.2 The Wconsensus Algorithm

WCONSENSUS (Hertz & Stormo, 1999) is an extension of the CONSENSUS algo-

rithm (see section 2.1.1). While the CONSENSUS algorithm attempts to maximize

information content in a motif of a specific length, the WCONSENSUS algorithm at-

tempts to maximize “crude information content” in a motif of variable length. “Crude

information content” is the traditional information content minus two biases: average

information content for the number of sequences in the alignment and a multiple of

the standard deviation of the average information content. Allowing the motif length

to increase allows the algorithm to increase the crude information content. WCON-

SENSUS was used with PhyloCon (see section 2.3) to generate many suboptimal,

ungapped alignments for the initial profiles (Wang & Stormo, 2003b).

2.4.3 The MultiLAGAN Algorithm

The MultiLAGAN algorithm (Brudno et al., 2003) leverages many local alignments to

construct a global alignment. MultiLAGAN begins by performing pairwise alignment

for all sequences of interest using the LAGAN algorithm. The LAGAN algorithm

essentially attempts to find as many short alignments as possible and connects the

longest ones at overlapping positions. Using a phylogenetic tree provided by the

user, MultiLAGAN then merges the closest sequences into a “multi-sequence” using

the pairwise alignment. MultiLAGAN repeats the merge step by aligning the closest

multi-sequences until only one multi-sequence remains.

2.4.4 The Threaded Blockset Alignment Algorithm

The Threaded Blockset Aligner (Blanchette et al., 2004) was originally designed to

align very long sequences, such as whole genomes. Its operation is somewhat similar

to MultiLAGAN. Instead of attempting to find short alignments of subsequences, the

Threaded Blockset Aligner attempts to find long alignments of subsequences between

each pair of sequences. These alignments are known as “blocks”. Overlaps between

blocks represent a larger global alignment which may contain some or all of the se-

quences. Instead of creating one global alignment, the algorithm creates “threads” of

these blocks. These threads essentially project the overlapping blocks on to a contin-

uous reference sequence. The allows flexibility to view only relevant, alignable regions

instead of forcing one global alignment which includes the less certain alignment re-

gions between overlaps.

17

Chapter 3

Challenges for a New Method

3.1 Discovering Cis-Regulatory Elements in Closely

Related Genomes

Several methods exist to use information from multiple genomes to search for cis-

regulatory elements (McCue et al., 2001; McCue et al., 2002). These methods oper-

ate by using Gibbs Sampling to perform multiple local alignment on DNA sequences

upstream of orthologous genes. Orthologous genes, or orthologs, are genes with iden-

tical biological function present in multiple species which diverged from a common

ancestor. Orthologs provide clues to the evolutionary (or“phylogenetic”) relationships

between species. Probabilistically, observations of data in orthologous sequences are

not independent because of these evolutionary relationships, but until recently, mul-

tiple local alignment algorithms have considered these observations as independent.

As discussed briefly in section 1.1, one of the greatest problems with statistical

analysis of genomes is DNA sequence correlation between closely related species.

With our current Gibbs Sampling methods, this problem seems to exhibit itself when

comparing genomes at the family level of the taxonomic hierarchy. Correlation was a

problem between Escherichia coli K12 and Salmonella enterica Typhi in a previous

analysis (McCue et al., 2002), so it seems likely that it will be a problem among the

Shewanella species. The phylogenetic tree of figure 3.1 illustrates the phylogenetic

relationships between the Shewanella and the rest of the gamma proteobacteria class,

as determined using PHYLIP (Felsenstein, 1993) on 16S ribosomal RNA genes from

each species.

Chapter 4 introduces a new algorithm for discovering cis-regulatory elements in

closely related genomes.

18

Figure 3.1: A Gamma Proteobacteria Phylogenetic Tree

3.2 Analyzing Multiple Genomes Simultaneously

3.2.1 Software Design & Development

Comprehensive open source toolkits for developing bioinformatics applications are

available in Perl, Python, Java, and various other languages (Mangalam, 2002; Rice

et al., 2000). Most of these toolkits focus on facilitating the interpretation of biologi-

cal data rather than providing an integrated framework for computationally intensive

analysis. We do not believe that any of these open source toolkits will provide ade-

quate functionality and performance for our analysis.

With the deluge of new genome sequences becoming available, scientists need a

flexible computational infrastructure to handle intensive computation across massive

data sets. As bioinformatics researchers migrate from a competitive environment to a

much more collaborative one (Quackenbush, 2003), open standards and open source

software implementations are essential. Specifically, there is also demand for an open

source implementation of software to search for cis-regulatory elements (Jamison,

2003).

Chapter 5 introduces a new software framework to address these issues.

19

3.2.2 Data Management

Recently, we conducted a project analyzing the genomes of five species of Cyanobacte-

ria, commonly known as blue-green algae (McCue et al., 2006). This analysis project

spanned the full genome of each species, focusing on DNA sequence segments near

approximately 1600 genes that exist in all five species. These sequence segments were

inefficiently stored in separate files, losing some information about their context in

their respective genomes. In total, approximately 286,000 files were associated with

the project.

Similar analyses have been conducted in the past on sets of up to seven genomes

(McCue et al., 2002), and larger analyses will be conducted in the future. As the

amount of data and the scope of the analysis grow, relying on huge sets of loosely

connected files becomes difficult and error-prone. It is difficult to bring together the

correct pieces of data from various portions of the analysis, and it is especially difficult

to integrate our information with data from external sources.

Chapter 6 introduces a new database system for managing data from whole genome

discovery of cis-regulatory elements.

20

Chapter 4

The Gibbs Phylogenetic Sampler

A new multiple local alignment algorithm which incorporates phylogenetic relation-

ships in its statistical model has the potential to be very useful. We propose to replace

the product multinomial model of the Gibbs Recursive Sampler algorithm (Thomp-

son et al., 2003) with a new “product phylogeny” model. Several effective methods of

creating phylogenetic trees from DNA sequence data are implemented in the PHYLIP

software package (Felsenstein, 1993). Given such a tree, we can compute the prob-

ability of the data observed in orthologous species using a variety of methods, some

of which are described in section 2.2. We believe that this probability distribution

will be significantly more accurate than the simple product multinomial model when

analyzing closely related genomes.

Throughout this section, the terms transcription factor binding site and cis-

regulatory element may be used interchangeably.

4.1 The Product Phylogeny Model

Recall the mathematical model of a motif (product multinomial distribution) from

section 1.2.2. The Gibbs Sampling algorithms of section 2.1.3 use this motif model

to describe transcription factor binding sites. The product multinomial distribution

contains the probabilities for each nucleotide at each position within the motif. The

probability at each position is determined by the composition of the sites already in

the alignment. To evaluate a sequence, one multiplies these probabilities for each

position according to the observed nucleotides in the sequence.

Whereas the product multinomial model uses the probabilities of each nucleotide

at each position, the product phylogeny model uses the likelihood of each nucleotide

at each position being observed in its corresponding species given a nucleotide substi-

21

tution model. These new likelihoods are calculated using Felsenstein’s Algorithm (see

section 2.2.3) at each position. To evaluate a sequence, these likelihoods from Felsen-

stein’s Algorithm are multiplied together. This method accounts for the evolutionary

dependence between the observed nucleotides of each species.

4.2 The Substitution Model

An implementation of the product phylogeny model can use a stationary Markov

process with the substitution matrix of Hasegawa, Kishino, and Yano (Hasegawa

et al., 1985). For infinitesimal time, this matrix is given by I + Qdt, where

Q = µ

−QAA βπT βπC απG

βπA −QTT απC βπG

βπA απT −QCC βπG

απA βπT βπC −QGG

 (4.1)

QAA = (βπT + βπC + απG)

QTT = (βπA + απC + βπG)

QCC = (βπA + απT + βπG)

QGG = (απA + βπT + βπC)

µ sets the average mutation rate, which will be discussed later, I is the 4x4 identity

matrix, and dt is a small amount of time. πi is the equilibrium composition of nu-

cleotide iε {A, T, C,G}, which is usually taken from the background composition, and∑
iε{A,T,C,G} πi = 1. α is the rate factor for a mutation that is a transition, and β is

the rate factor for a mutation that is a transversion. Usually a ratio of transitions to

transversions is used to set α and β. If α = β, the matrix follows the model used in

Felsenstein’s original algorithm (Felsenstein, 1981). If πi = 1
4
∀i, the matrix follows

the model used by Kimura (Kimura, 1980). In our application, α and β will initially

be taken from the literature (Siepel & Haussler, 2004), but later they may be directly

inferred from the data. Initially, µ will be chosen using Lanave’s method (Lanave

et al., 1984), but later we may like to sample it using Yang’s method (Yang, 1994b).

At time t = 0 , no mutations have occurred, and equation 4.1 becomes the iden-

tity matrix. For a longer time t > dt, to calculate the probabilities Pij(t) that the

nucleotides have mutated from i to j in time t, we calculate eQt. To avoid repeatedly

22

performing this calculation in software, we can analytically solve for Pij(t) :

Pij(t) =

πj + πj

(
1

Πj
− 1

)
e−µt +

(
Πj−πj

Πj

)
e−µtA (i = j)

πj + πj

(
1

Πj
− 1

)
e−µt −

(
πj

Πj

)
e−µtA (i 6= j, transition)

πj (1− e−µt) (i 6= j, transversion)

(4.2)

A = 1 + Πj

(
β

α
− 1

)

Πj =

 πA + πG (if jεA,G)

πC + πT (if jεC, T)

Equation 4.2 is given on page 438 of Molecular Systematics (Hillis et al., 1996). Sim-

ilar equations are given for the Jukes & Cantor and Felsenstein substitution models.

The Gibbs Phylogenetic Sampler will also be able to use these other substitution

matrices.

4.3 Sampling Cis-Regulatory Elements

Sampling elements follows the procedure given for the Gibbs Recursive Sampler in sec-

tion 2.1.3 with one significant modification: the product phylogeny model described

above replaces the product multinomial model. Specifically, this affects the proba-

bility that a transcription factor binding site starts in a particular position. This

sampling step is called the predictive update step in general Gibbs Sampling.

Let S be the total number of sequences we are examining. Let R = {r1, ..., rS} be

the sequence data, and let ri,j,k be the sequence data for sequence i from position j

to position k (a set of nucleotides). Let N be the number of cis-regulatory elements

corresponding to a particular motif, and let A = {a1, ..., aN} be the alignment of

the potential elements, where ai represents a pair denoting the sequence and position

where the element begins. Let W be the width of the element (number of nucleotides).

Let h(·) be a vector function which counts the individual nucleotides by type at a set

of positions, and let Θ be the set of all parameters to our probability distribution.

Using either the product multinomial or product phylogeny model, we can calculate

the probability relative to background that an element begins at position p in sequence

23

s as:

P (ai = (s, p)|Θ, R) ∝
W∏

j=1

P(position p + j − 1 belongs to motif |Θ)

P(position p + j − 1 belongs to background|Θ)
(4.3)

With the product multinomial model, Θ = {−→θ0 , ...,
−→
θW} are the parameters to

the multinomial distributions at each position, and
−→
θ0 is a separate multinomial dis-

tribution describing all sequence data outside the motif (a.k.a. background). Note

that the θ vectors are generally written without the vector marks in the literature,

so they are only used here for emphasis. We will borrow from Liu, Neuwald, and

Lawrence’s notation for raising a vector to a power: θθb
a with p-dimensional vectors

θa = {θa1 , ..., θap} and θb = {θb1 , ..., θbp} implies θ
θb1
a1 · · · θ

θbp
ap (Liu et al., 1995). The

probabilities of equation 4.3 above are:

P(position belongs to motif) = (θj)
h(rs,p+j−1)

P(position belongs to background) = (θ0)
h(rs,p+j−1)

With the product phylogeny model, the probabilities of equation 4.3 are calculated

using Felsenstein’s Algorithm and the substitution model shown in section 4.2. Let

Θ remain the multinomial parameters used above. In our first implementation, the

multinomial parameters will be used as the equilibrium distributions, so the vectors

{θ0, ..., θW} correspond to −→π in equation 4.1, where −→π = {πA, πT , πC , πG}. Later, we

may need another method to sample equilibrium distributions, which will be discussed

in section 4.4. Let T be a phylogenetic tree and its edge lengths as described in section

2.2.4. Let A{p} be the nucleotides at position p of each element in the proposed

alignment. The probabilities will be the likelihoods of the nucleotides in the proposed

alignment given the phylogenetic tree and equilibrium distributions for each position

and the background. These become:

P(position belongs to motif) = Felsenstein(T,A{j}, θj)

P(position belongs to background) = Felsenstein(T,A{j}, θ0)

Details of the computation of Felsenstein(·) are described below.

24

Figure 4.1: A Rooted Phylogenetic Tree of Gamma Proteobacteria

4.3.1 Felsenstein’s Algorithm Revisited

Felsenstein’s Algorithm uses a post-order tree traversal on a phylogenetic tree to

recursively calculate the likelihoods we desire. Each leaf node of the tree has an ob-

served nucleotide in a given species, and each internal node represents a hypothetical

ancestral species.

Using Felsenstein’s notation (Felsenstein, 1981), let si be the nucleotide at node i,

and let vi be the length of the branch leading to node i from its immediate ancestor

on the tree. Felsenstein defines L(k)
s to be the likelihood of the subtree connecting

node k and all of the leaves which are direct or indirect descendants of node k, given

that node k contains nucleotide s. This is best illustrated with a rooted tree, as in

figure 4.1, which is equivalent to the unrooted tree shown earlier in figure 3.1. For

example, in the rooted tree, let node k be the point where the branch containing

Yersinia Pestis meets the trunk of the tree. In this case, the tree between node k and

its descendant leaves contains Yersinia Pestis, Escherichia coli K12, and Salmonella

enterica Typhi. For any node k with children i and j, Felsenstein shows:

L(k)
sk

=

(∑
si

Psksi
(vi)L

(i)
si

)∑
sj

Psksj
(vj)L

(j)
sj

 (4.4)

We also need the base case for the recursion. For a leaf node k:

25

L(k)
sk

=

 1 (if s is the observed nucleotide)

0 (otherwise)

Recall from section 4.2 that Pij(t) are the nucleotide substitution probabilities.

Instead of using Felsenstein’s original Pij(t), we will use the one given in equation

4.2. We are interested in the likelihood of an entire tree. Felsenstein showed how to

compute this, with the root of the tree labeled as node 0:

∑
s0

πs0L
(0)
s0

For further details and a good example, please see Felsenstein’s original article (Felsen-

stein, 1981).

4.3.2 Recursive Sampling

The recursive sampling procedure proceeds as follows for each sequence:

1. “forward step”: calculate probabilities of cis-regulatory elements

2. sample number of cis-regulatory elements for current sequence

3. “backward step”: sample cis-regulatory elements in current sequence

4. update motif models to include newly sampled cis-regulatory elements

4.3.2.1 Sampling Forward Step

The “forward step” proceeds as follows:

1. For each motif, at each possible position, calculate the ratio of the probability of

a cis-regulatory element (of that motif) to the probability of background (from

the background model).

2. At each possible position, up to some maximum recursion depth, for each motif,

calculate the conditional probability of a cis-regulatory element (using the ratio

from step 1) given that it is preceded by exactly n other cis-regulatory elements

of particular motifs, where n is the depth of the recursion.

26

Generally, only one or two motifs is used in a sampling run. The maximum recursion

depth is set by the user, but it is often set to only one or two levels. Sampling with one

level of recursion is very similar to the Gibbs Site Sampler, without the assumption

that one cis-regulatory element must be sampled. The run time of step 1 is θ(ml),

where m is the number of motifs and l is the length of the sequence. The run time

of step 2 is θ(mlr), where r is the maximum recursion depth. Note that no sampling

occurs in this step.

4.3.2.2 Sampling the Number of Cis-Regulatory Elements

Before the sampler completes some amount of “burn-in” iterations, the number of

cis-regulatory elements in a particular sequence is sampled from a prior distribution.

For lack of an informed prior, we use a uniform distribution on [0, r], where r is

the maximum recursion depth. After the sampler has completed its burn-in, the

number of cis-regulatory elements is sampled proportional to the total probability for

each level of recursion calculated in the forward step, weighted by an informed prior

distribution if provided. These values are computed in the forward step, so the run

time for this step is θ(r).

4.3.2.3 Sampling Backward Step

Let k be the number of cis-regulatory elements to sample (which was sampled in

the previous step). The cis-regulatory elements are now sampled in reverse order

from the deepest level of recursion, proportional to the probabilities computed in the

forward step. The run time of this step is θ(ml) since all l positions may be visited

during the sampling process.

4.3.2.4 Sampling Model Update Step

The model update step varies with the model for a particular motif. See section 4.4

for discussion on updating product multinomial and product phylogeny models. For

both of these models, the run time of this step is θ(nw), where n is the number of

cis-regulatory elements and w is the width of the largest motif.

4.3.2.5 Run Time Analysis

Recall that the steps above are run for each sequence. Several to many sequences

(generally 5-20) are cycled through in a typical sampling run. The number of cycles

through all sequences is determined by the user, but several strategies to determine

27

when to stop cycling may be employed (see section 4.3.2.6). Let n be the number of

sequences and i be the number of total iterations (cycles). Note that “sequences”may

include globally aligned sequences as a single sequence. The total run time of the

above steps is limited by the forward step, which is θ(mlr). Considering the input

sequences and the cycling, the total run time is θ(inmlr).

4.3.2.6 Stopping the Sampling Process

Theoretically, given infinite time, the sampler samples sites proportional to their like-

lihood. In practice, the number of sampling iterations must be bounded. The simplest

bound is a constant, where the sampler runs for some fixed number of iterations. The

solution may be the final solution sampled, the maximum a posteriori (MAP) solu-

tion encountered, or some sample of solutions. Work with similar sampling methods

in RNA secondary structure prediction (Ding & Lawrence, 2003) has shown that pre-

senting a sample of solutions may be far more useful than a single solution, even if

the single solution is optimal by some measure (Ding et al., 2005).

4.4 Updating the Statistical Model

Updating the statistical model is one of the more troublesome parts of the Gibbs Phy-

logenetic Sampler. In Bayesian Statistics, anything not observed is treated as missing

data. Bayesian Statistics also specify prior distributions which give prior information

about parameters to a distribution, but these details will be omitted for now. The pa-

rameters to the product multinomial model are not observed, but they are a function

of the sequence alignment, which is sampled as a random variable from the prod-

uct multinomial distribution. Specifically, θj =
(
h(A{j}) + β

)
/
∣∣∣h(A{j}) + β

∣∣∣, which

is the posterior mean of the distribution. β is a vector of Bayesian pseudocounts.

Obtaining parameters in this manner is known as collapsing or grouping (Liu, 1994).

The parameters to the product phylogeny model (the equilibrium distributions) are

not observed, and there does not appear to be a straightforward method to sample

them from the product phylogeny distribution. It may be possible to use an impor-

tance sampling method to obtain a posterior mean that is useful, but this remains

to be investigated. Importance sampling methods for Markov Chain Monte Carlo

applications are discussed in Monte Carlo Strategies in Scientific Computing (Liu,

2001).

Empirical evidence suggests that the parameters to the product phylogeny model

can be reasonably estimated from the posterior mean of the product multinomial

28

distribution. For improved accuracy, these estimates are weighted by sequence weights

(see below). Given a weight w for a particular species, each observation from that

species counted by h(·) is counted w times instead of once. A vector of sequence

weights need only be computed once for a given tree.

4.4.1 Sequence Weights

We compute “optimal sequence weights that minimize the sum of the variances of the

estimators of base frequency parameters for sequences related by a phylogenetic tree”

(Newberg et al., 2005). We begin by computing a pairwise distance matrix D from

the phylogenetic tree. Recall that each leaf is a species. Also recall that distances

along branches of the tree are additive, so determining the pairwise distances for all

species is not difficult with a post-order tree traversal:

1. For each node, request the distances to all leaf nodes from its children.

2. After the distances to all leaf nodes from the children have been returned, add

the distance between the parent and child to each returned distance.

3. Check all pairs of observed leaf nodes to determine if their distance has been

computed yet. If not, their distance is the sum of the distances to each leaf

node from the current node (step 2).

With this matrix D, we compute a new matrix C. For each entry Di,j, let Ci,j =

e−kDi,j , where k is the rate parameter. Generally, for an alphabet of with a letters,

we let k = a
a−1

. The vector of sequence weights W is now computed as W = C−1−→1 ,

where
−→
1 is a column vector filled with 1s and with length equal to the number of

species. Negative weights are set equal to 0, and the final vector of sequence weights

is scaled to preserve the original sum of the weights.

4.5 Evaluating the Predicted Cis-Regulatory Ele-

ments

As mentioned in section 2.1.3, potential alignments are evaluated by calculating the

a posteriori probability of the alignment given the data. To do this, we integrate over

all possible values of the parameters:

P (A|R) =
∫

P (A|R, Θ)P (Θ)dΘ

29

For the product multinomial model (without prior probabilities for simplicity), this

is:

P (A, Θ|R) ∝ θ
h(R{−A})
0

W∏
j=1

θ
h(A{j})
j

We integrate over all Θ to obtain:

P (A|R) ∝
Γ
(
h(R{−A})

)
Γ
(∣∣∣h(R{−A})

∣∣∣) ×
W∏

j=1

Γ
(
h(A{j})

)
Γ
(∣∣∣h(A{j})

∣∣∣)
Above, R{−A}denotes the background, all nucleotides not in a predicted cis-regulatory

element. Using Liu, Neuwald, and Lawrence’s notation, Γ(·) on a vector V =

{v1, ..., vn} indicates Γ(v1) · · · Γ(vn), and |v| = |v1|+ · · ·+ |vn| (Liu et al., 1995).

For the product phylogeny model, there does not appear to be an analytical

method to perform the required integration; however, we can use importance sampling

to approximate this integral. To begin, we want to integrate

P (A, Θ|R) ∝
∏

jεR{−A}

Felsenstein(T,R{j}, θ0)×
W∏

j=1

Felsenstein(T,A{j}, θj)

over all Θ, where R{j}indicates the nucleotides with position j in each sequence.

To perform integration by importance sampling, we need an integrable function

g(θ; S) (where S is a set of aligned nucleotides such as R{j} or A{j}) which approx-

imates Felsenstein(T, S, θ). Since Felsenstein’s Algorithm is essentially replacing a

multinomial variable in the Gibbs Phylogenetic Sampler, let g(θ; S) = θh(S).

∫
Felsenstein(T, S, θ)dθ =

∫ Felsenstein(T, S, θ)

g(θ; S)
g(θ; S)dθ

= Eg(θ;S)

[
Felsenstein(T, S, θ)

g(θ; S)

]
×
∫

g(θ; S)dθ

Note that we can integrate g(θ; S):

∫
g(θ; S)dθ =

Γ(θ)

Γ(|θ|)

Finally,

P (A|R) = Eg(θ)

 ∏
jεR{−A}

Felsenstein(T, R{j}, θ)

g(θ; R{j})

× Γ
(
h(R{−A})

)
Γ
(∣∣∣h(R{−A})

∣∣∣)

30

×
W∏

j=1

Eg(θ)

[
Felsenstein(T, A{j}, θ)

g(θ; A{j})

]
×

Γ
(
h(A{j})

)
Γ
(∣∣∣h(A{j})

∣∣∣)

Through importance sampling, the above expectations can be estimated by drawing

a large number of samples of θ from g(θ; S) and taking the average.

31

Chapter 5

Bioinformatics Research

Application Software System

(BRASS)

5.1 The System Architecture

The Gibbs Phylogenetic Sampler is essentially a combination and extension of existing

algorithms applied to a type of data set where existing methods are not expected

to yield results. It is natural to desire a generic solution in anticipation of future

problems. To implement the Gibbs Phylogenetic Sampler, we developed a flexible

software system, particularly well suited to manipulating large quantities of sequence

data, which facilitates efficient statistical computation.

We have created a new open source software framework as part of our solution.

Our framework provides an object oriented, high performance, scalable, extensible

C++ (Stroustrup, 2000) application programming interface (API) for creating a new

generation of genomic scale analysis software. To address the data management

issues, the framework is designed to facilitate interactions with a relational database

management system which is described in detail in chapter 6.

5.2 Software Design

A software framework “provides an integrated set of domain-specific structures and

functionality based on patterns” (Schmidt et al., 2004). More specifically, a software

framework is composed of components and patterns (Johnson, 1997). A component

32

is a reusable piece of software code. As described in Design Patterns, patterns are

“descriptions of communicating objects and classes that are customized to solve a

general design problem in a particular context” (Gamma et al., 1995). A framework

provides a context for patterns as well as components which facilitate the imple-

mentation of patterns. Additionally, a framework may be a component in a larger

system. Frameworks span both the abstract design and concrete implementation of

software systems. For more information on software frameworks, please see the Fayad,

Schmidt, and Johnson books (Fayad et al., 1999a; Fayad et al., 1999b).

The domain for our framework is statistical biological sequence analysis. Our main

application is a Gibbs Sampler, and this can be described generically as a pattern.

In Bayesian statistics, all Gibbs Samplers sample random variables from conditional

distributions to characterize missing data from observed data. The general process

is:

1. Observe data and define missing data.

2. Assume that missing data fits a specific type of probability distribution (the

model).

3. Randomly guess values for the missing data and parameters to the model.

4. Sample missing data given the model.

5. Sample the model given the data.

6. Calculate probability of predicted missing data.

7. Repeat steps 4-6 until convergence criteria are met.

From the above pattern, we can infer some very generic components that we will need:

• Data

• Model

• Sampler

These components interact together to perform Gibbs Sampling. The object model,

shown in appendix A, attempts to facilitate the implementation of this pattern.

Specifically, the BRASS::IO namespace contains the data components. The

BRASS::Math namespace contains the model components. The BRASS::Samplers

33

namespace contains the sampler components. The BRASS::Trees namespace

contains generic classes for handling tree data structures. The BRASS::Util

namespace contains wrappers for Standard Template Library (STL) classes. The

individual classes are described below.

5.2.1 Software Design Goals

BRASS was designed with the following software design goals: BRASS should...

• significantly ease development of software for statistical bioinformatics applica-

tions.

• provide efficient, easily reusable, object oriented source code.

• be easy to use in a grid computing environment.

• require external libraries only when the development cost of using them is sig-

nificantly less than the development cost of implementing the necessary func-

tionality.

5.3 BRASS Classes

This section documents the essential design and functionality of each class in the

BRASS library. It is intended to describe core design decisions, not implementation

details.

5.3.1 BRASS::IO

UML diagrams for BRASS::IO are shown in figures A.1, A.2, and A.3.

5.3.1.1 Letter (a.k.a. basic Letter)

This class provides a generic mechanism for using objects or primitive data types as

symbols in an alphabet. basic Letter provides information about the storage of letters,

usually from a sequence. Public members LetterType and LetterSymbol export this

information. LetterType (or letter t) is the type of the numeric representation of a

letter. For more complicated cases, such as paired letters treated as a single letter

(as in some aligned data), it makes sense to create a class to represent this. Such

a class will need to provide conversion from its representation to a number of type

34

LetterType. LetterSymbol is a primitive or class which is the usual representation

of a letter. There should be a 1:1 mapping of LetterSymbol to LetterType. For

example, with DNA, it is convenient to use ASCII characters as LetterSymbols and

their numeric equivalents as LetterTypes.

5.3.1.2 AlignedLetter

AlignedLetter provides a mechanism for storing all of the observed letters in an align-

ment as a single letter. AlignedLetter implements the STL Container concept to allow

convenient access to the individual letters in the AlignedLetter.

5.3.1.3 Alphabet

An Alphabet is a set of symbols which describe individual positions in a generic

sequence. Specifically, it is a set of letters which have some meaning together. The

Alphabet class is abstract.

5.3.1.4 AlphabetASCII

AlphabetASCII is an abstract class derived from Alphabet. AlphabetASCII is essen-

tially a tag to limit letters in the alphabet to ASCII characters.

5.3.1.5 AlphabetDNA

AlphabetDNA is a concrete class derived from AlphabetASCII which provides an

alphabet comprised of the nucleotides present in DNA sequences. This class also

provides letters for gaps in sequences, masks in sequences, and unknown nucleotides.

5.3.1.6 AlphabetRNA

Similar to AlphabetDNA, AlphabetRNA is derived from AlphabetASCII and provides

an alphabet comprised of the nucleotides present in RNA sequences.

5.3.1.7 AlphabetProtein

Similar to AlphabetDNA, AlphabetProtein is derived from AlphabetASCII and pro-

vides an alphabet comprised of the amino acids in a protein’s primary structure

sequence.

35

5.3.1.8 SequenceData (a.k.a. basic SequenceData)

The basic SequenceData class provides a mechanism for storing and accessing a set

of sequences. This class also implements the STL Container concept for usage

convenience. SequenceData is typically used within the BRASS library for generic

sequences and generic, globally aligned sequences (as

basic SequenceData<SequenceAlignment>, a.k.a. SequenceDataAligned).

5.3.1.9 Sequence (a.k.a. basic Sequence)

The basic Sequence class provides a mechanism for storing and accessing a single,

generic sequence.

5.3.1.10 SequenceAlignment

The SequenceAlignment (a.k.a. basic Sequence<AlignedLetter>) class provides stor-

age for a set of aligned sequences, such as orthologs.

5.3.1.11 SequenceFeature

A SequenceFeature is a point of biological interest along a sequence. An example

is a binding site for a particular transcription factor. This class only describes the

information about the feature in the data (sequence and position), not any mathe-

matics which may describe the feature in some other way. It may be associated with

a mathematical model.

5.3.1.12 SequenceFeatureSet

A SequenceFeatureSet is a group of features. This class implements the STL Con-

tainer concept to provide convenient access to the individual SequenceFeatures.

5.3.1.13 SequenceDataFactory

The SequenceDataFactory class contains methods to create new instances of Sequence

and SequenceData from files. For example, this class is used to read sequence data

from FASTA files.

36

5.3.2 BRASS::Math

Figure A.5 illustrates an overview of the BRASS::Math namespace in UML. Addi-

tional details are shown in figures A.6, A.7, A.8, and A.9.

5.3.2.1 LocalAlignment

LocalAlignment is a local alignment of features in BRASS::IO::Sequence objects. For

example, these may be transcription factor binding sites. Note that in globally aligned

data, these are actually alignments of alignments since a SequenceAlignment is es-

sentially a collapsed form of close sequences.

5.3.2.2 SequenceFeatureModel

SequenceFeatureModel is an abstract class (i.e. interface) representing a mathemat-

ical model of a sequence feature (either foreground or background). These are often

called motifs, especially for foreground models. An example model for an alignment is

a product multinomial motif. Another example is a generic background model which

may describe a piece of sequence. See SequenceForegroundModel and SequenceBack-

groundModel.

5.3.2.3 SequenceForegroundModel

SequenceForeground model is an abstract class (i.e. interface) derived from Sequence-

FeatureModel which represents a mathematical model of a foreground sequence fea-

ture (such as an alignment). These are often called motifs. An example model for

an alignment is a product multinomial motif. Unlike background models, foreground

models are sampled from the data. See MotifProduct.

5.3.2.4 MotifProduct

MotifProduct is a concrete class derived from SequenceForegroundModel which im-

plements a generic multiplicative motif for locally aligned sequences. Product multi-

nomial and product phylogeny motifs are example uses of MotifProduct. These in-

stantiations are implicit by the type of “columns” in the MotifProduct. Each column

is the model for a specific position in the multiplicative motif. This allows mixing

and matching of columns. A better example is the use of “null” columns to represent

positions in a motif which are unmodeled. See MotifColumn for more detail.

37

5.3.2.5 MotifColumn

MotifColumn is an abstract class (i.e. interface) for a column of a product style

motif (MotifProduct). Examples of column types may be multinomial, as in prod-

uct multinomial, or phylogeny, as in product phylogeny. Generically, this interface

is simple enough to describe any distribution which can be evaluated and may need

a corresponding model to be updated. See MotifColumnMultinomial, MotifColumn-

Phylogeny, and MotifColumnNull for examples.

5.3.2.6 MotifColumnMultinomial

MotifColumnMultinomial is a concrete class derived from MotifColumn. This class

represents a multinomial distribution. Letters from an Alphabet are the possible

outcomes. This is used as a column in a product multinomial distribution. This class

also includes Bayesian pseudocounts. See section 4.3.

5.3.2.7 MotifColumnNull

MotifColumnNull is a concrete class derived from MotifColumn. This class repre-

sents an unmodeled position in a multiplicative motif. The probability of any out-

come/observation is 1.

5.3.2.8 MotifColumnPhylogeny

MotifColumnPhylogeny is a concrete class derived from MotifColumn. This class

implements Felsenstein’s Algorithm for motif positions in a multiplicative motif. Mo-

tifColumnPhylogeny runs Felsenstein’s Algorithm on alignments of globally aligned

data (ie. SequenceAlignment). See FelsensteinAlgorithm.

5.3.2.9 SequenceBackgroundModel

SequenceBackground model is an abstract class (i.e. interface) derived from Sequence-

FeatureModel. Similar to SequenceForegroundModel, this class represents features as

background models. Unlike foreground models, background models are held fixed and

not sampled. This interface should be implemented by all background models. See Se-

quenceBackgroundModelComposition, SequenceBackgroundModelPhylogenyCompo-

sition, SequenceBackgroundModelPhylogenyUnified, SequenceBackgroundModelUni-

fied, SequenceBackgroundModelUnified, SequenceBackgroundModelUniform.

38

5.3.2.10 BackgroundProduct

BackgroundProduct is a concrete class derived from SequenceBackgroundModel. It

implements a generic multiplicative background for locally aligned sequences. Prod-

uct multinomial and product phylogeny backgrounds are example uses of Background-

Product. These instantiations are implicit by the type of columns in the Background-

Product. The primary difference between BackgroundProduct and MotifProduct is

that the model for BackgroundProduct is fixed, not sampled.

5.3.2.11 SequenceBackgroundModelUniform

SequenceBackgroundModelUniform is a concrete class derived from SequenceBack-

groundModel. SequenceBackgroundModelUniform is the simplest background model.

This model assumes that all observations are equally likely considering the number

of letters in the alphabet of the sequence.

5.3.2.12 SequenceBackgroundModelComposition

SequenceBackgroundModelComposition is a concrete class derived from Sequence-

BackgroundModel which calculates the background as the composition of observa-

tions (letters) in the sequences. The composition provides the parameters to the

product multinomial distribution to calculate the probabilities of observations in the

sequences.

5.3.2.13 SequenceBackgroundModelUnified

SequenceBackgroundModelUnified is a concrete class derived from SequenceBack-

groundModel. SequenceBackgroundModelUnified uses a previously computed position-

specific composition as a background model for sequences. The position-specific com-

position provides the parameters to the product multinomial distribution to calculate

the probabilities of observations in the sequences. Currently, the position-specific

composition is obtained from the Unified segmentation program (Liu & Lawrence,

1999).

5.3.2.14 SequenceBackgroundModelPhylogenyComposition

SequenceBackgroundModelPhylogenyComposition is a concrete class derived from Se-

quenceBackgroundModel. Similar to SequenceBackgroundModelComposition for se-

quences, SequenceBackgroundModelPhylogenyComposition uses the composition of

39

sequence alignments as a background model. Essentially, the composition provides

the equilibrium distribution for Felsenstein’s Algorithm to calculate the probabili-

ties of observations in the sequence alignments. See SequenceAlignment and Felsen-

steinAlgorithm.

5.3.2.15 SequenceBackgroundModelPhylogenyUnified

Similar to SequenceBackgroundModelUnified for sequences, SequenceBackground-

ModelPhylogenyUnified uses a previously computed position-specific composition as

a background model for sequence alignments. The position-specific composition pro-

vides the equilibrium distribution for Felsenstein’s Algorithm to calculate the prob-

abilities of observations in the sequence alignments. See SequenceAlignment and

FelsensteinAlgorithm. Currently, the position-specific composition is obtained from

the Unified segmentation program (Liu & Lawrence, 1999). SequenceBackground-

ModelPhylogenyUnified is not derived from SequenceBackgroundModel because its

role is to provide SequenceDistributions which can be used with BackgroundProduct

to create a background model.

5.3.2.16 SequenceDataModelFactory

In Gibbs Sampling, parameters for initial models are drawn at random. Sequence-

DataModelFactory provides methods to create MotifProduct objects with randomly

drawn parameters. The user may specify multinomial or phylogeny MotifColumn

types for new MotifProduct objects created by the factory. SequenceDataModelFac-

tory also creates BackgroundProduct objects based on existing distributions, such as

sequence composition or a previously computed position-specific background distri-

bution.

5.3.2.17 SequenceDistribution

A SequenceDistribution is a concrete class derived from Sequence. It is a special type

of sequence, where each position of the sequence is a probability distribution; i.e. each

position contains probabilities for each observable letter from the sequence alphabet.

5.3.2.18 SequenceWeights

SequenceWeights is a concrete class which implements a sequence weighting calcu-

lation. Specifically, this class provides a method which computes “optimal sequence

weights that minimize the sum of the variances of the estimators of base frequency

40

parameters for sequences related by a phylogenetic tree” (Newberg et al., 2005). This

implementation assumes a Jukes-Cantor model. See section 4.4.1.

5.3.2.19 FelsensteinAlgorithm

This class implements Felsenstein’s Algorithm (Felsenstein, 1981), a method for com-

puting the probability of observing aligned nucleotides given a phylogenetic tree. It

requires a FelsensteinTree and a SubstitutionProcess.

5.3.2.20 FelsensteinTree

FelsensteinTree is a concrete class derived from NewickTree. Specifically,

FelsensteinTreeNode is derived from NewickTreeNode, and the tree itself is a

BRASS::Trees::Tree<FelsensteinTreeNode>. It is identical to a NewickTree, except

each node also contains a substitution matrix. The substitution matrix is computed

by FelsensteinAlgorithm (with a SubstitutionProcess) from the alignment data and

is used to compute various probabilities of observations across the tree.

5.3.2.21 SubstitutionProcess

Felsenstein’s Algorithm allows various models of nucleotide substitution (evolution).

SubstitutionProcess is an abstract class (i.e. interface) which provides a generic

mechanism for creating the substitution matrices used by FelsensteinAlgorithm. This

abstraction allows changes to the substitution process to be made without alter-

ing FelsensteinAlgorithm. See SubstitutionProcessF81. Alternative substitution pro-

cesses are described in sections 2.2.5 and 4.2.

5.3.2.22 SubstitutionProcessF81

SubstitutionProcessF81 is a concrete class derived from SubstitutionProcess which

implements Felsenstein’s original substitution process (Felsenstein, 1981), using the

edge length interpretation of Lanave et al.

5.3.2.23 SequenceDataModel

SequenceDataModel is a storage class which contains information about the mathe-

matical models used to describe the data in a SequenceData structure. The model

needs to know local foreground features, such as locally aligned binding sites, as well

as the mathematical models for these features. The models associate directly with

41

their data, which can be accessed through their accessor methods. SequenceData-

Model essentially coordinates data, foreground models, and the background model

for a particular analysis.

5.3.3 BRASS::Samplers

Figure A.4 illustrates the BRASS::Sampler classes in UML.

5.3.3.1 DataModelSampler

DataModelSampler is an abstract class to allow generic sampling using a set of models

and data. Currently, only Gibbs Samplers implement this interface.

5.3.3.2 GibbsSiteSampler

GibbsSiteSampler is an implementation of a simple Gibbs Sampler on sequence data

with corresponding models. This sampler assumes that each sequence contains exactly

one instance of one model. Instances of the model are sampled based on their ratio

to a background model. This is the sampling method used by Lawrence et al. in

1993 (Lawrence et al., 1993). GibbsSiteSampler implements the DataModelSampler

interface.

5.3.3.3 GibbsRecursiveSampler

GibbsRecursiveSampler is an implementation of a dynamic programming Gibbs Sam-

pler on sequence data with corresponding models. This sampler allows multiple in-

stances of multiple models in each sequence. The number of instances in each sequence

is sampled from the total likelihood, and instances of each model are sampled based

on their ratio to background. This is the sampling method described by Liu et al. in

1999 (Liu et al., 1999) and used by Thompson et al. in 2003 (Thompson et al., 2003).

GibbsRecursiveSampler implements the DataModelSampler interface.

5.3.3.4 FrequencySolution

FrequencySolution is a class which counts features in SequenceFeatureSets by se-

quence and position. With a Gibbs Sampler, this class can provides the information

required to construct a frequency solution.

42

5.3.3.5 GibbsSampler

GibbsSampler is a storage class which coordinates the data, models, and sampler used

for a particular analysis.

5.3.4 BRASS::Trees

5.3.4.1 Tree

This class provides a generic tree which allows an arbitrary number of children at any

given node. Copy constructors and assignment operators are intentionally declared

private and undefined to avoid implicit copying of a Tree. A clone() member function

is provided to explicitly copy a Tree.

5.3.4.2 NewickTree (a.k.a. Tree<NewickTreeNode>)

A NewickTree is a Tree which represents a Newick tree as described by Felsenstein

(Felsenstein, 1993). Each node has a branch length to its parent and a label. At leaf

nodes, the species name is the label.

5.3.4.3 FelsensteinTree (a.k.a. Tree<FelsensteinTreeNode>)

A FelsensteinTree is a NewickTree which also stores transition matrices at each node.

5.3.4.4 NewickTreeFactory

NewickTreeFactory provides a mechanism to read a Newick Tree from a file.

5.3.4.5 NewickTreeInput

NewickTreeInput is a helper class for NewickTreeFactory which uses the Boost Spirit

parser to parse a Newick tree from a text file.

5.3.5 BRASS::Util

5.3.5.1 List

List is a simple wrapper class for the STL List class. This wrapper was written to

facilitate safely deriving new classes from List.

43

5.3.5.2 MultiMap

MultiMap is a simple wrapper class for the STL MultiMap class. This wrapper was

written to facilitate safely deriving new classes from MultiMap.

5.3.5.3 Vector

Vector is a simple wrapper class for the STL Vector class. This wrapper was written

to facilitate safely deriving new classes from Vector.

5.4 Testing & Quality Assurance

Unit tests are small pieces of software written to test other pieces of software. For

example, someone might write a piece of software which calculates the area of a

circle, πr2. It is known that the software should produce a value πr2 ± ε, where ε

is some acceptable amount of error. If the software ever produces a value outside

this interval, it is incorrect. A unit test can be written to ensure that the value is

in this range. The unit test simply returns a value of PASS or FAIL. The unit test

becomes very valuable as the code changes over time. For example, a second software

developer might (stupidly) change the code for the area of the circle to compute the

circumference. Any code which calls the area computation code could be affected

by this change. When the unit test is run, it will detect that the area is no longer

accurate.

Unit tests in the BRASS source code ensure that code changes do not produce

unseen, harmful side effects such as those described above. Unit tests have been writ-

ten for all major numeric calculations in BRASS, including Felsenstein’s Algorithm,

sequence weights, and product multinomial calculations. Each unit test determines if

a calculation performed by BRASS matches a known, good result. The known results

were computed without the use of the software since this would invalidate the results.

Each time the library is recompiled, the full suite of unit tests may be run to ensure

that all results remain as expected. Unit tests also exist for the Gibbs Sampling code

to ensure that the samplers converge consistently on correct alignments.

Gibbs Site Sampling and Gibbs Recursive Sampling have each been tested with

both synthetic data and real data known to contain actual cis-regulatory elements. In

all cases, the samplers converge on the correct alignments. See chapter 7 for additional

detail about verifying the results of the BRASS Gibbs Recursive Sampler code.

44

5.5 Dependencies

The BRASS library depends on only two external libraries: Boost (Boost.org, 2004)

and Xerces (The Apache Software Foundation, 2005). BRASS makes use of the

Boost library for random number generation, linear algebra functionality, various

other mathematical functions, memory management, and unit testing. Xerces pro-

vides XML (The World Wide Web Consortium, 2006) parsing support. Future incor-

poration of an XML parser into Boost may remove the need for Xerces. Currently,

BRASS is implemented using the stable tree of Boost 1.32 and Xerces 2.7.0.

The BRASS source code is commented using a format suitable for generating an

application programming interface (API) reference manual for developers. Doxygen

(van Heesch, 2005) can be used to generate the reference directly from the source

code.

5.6 Supported Platforms

The framework is targeted for the g++ compiler on Solaris (SPARC and x86) and

Linux (x86). It has been tested with gcc 3.3.6, Solaris 9, and Gentoo Linux (kernel

2.6.x).

45

Chapter 6

BRASS Database System

To search for transcription factor binding sites, we often analyze sequences from sev-

eral related species. Recently, we conducted a project analyzing the genomes of five

species of Cyanobacteria (McCue et al., 2006), commonly known as blue-green algae.

This analysis project spanned the full genome of each species, focusing on DNA se-

quence segments near approximately 1600 genes that exist in all five species. These

sequence segments were inefficiently stored in separate files, losing some information

about their context in their respective genomes. The analysis also produced approx-

imately 68,000 new files of results from several programs that perform specific steps

of the analysis.

Similar analyses have been done in the past on sets of up to seven genomes (McCue

et al., 2002), and larger analyses will be done in the future. As the amount of data

and the scope of the analysis grow, relying on huge sets of loosely connected files

becomes difficult and error-prone. It is difficult to bring together the correct pieces

of data from various portions of the analysis, and it is especially difficult to integrate

our information with data from external sources.

6.1 Planning the System

6.1.1 The Users and Their Needs

A database system for bioinformatics sequence analysis will generally serve three

types of users: biologists, mathematicians, and computer scientists. For the purposes

of this system, biologists include molecular biologists and molecular biochemists, and

mathematicians include statisticians.

Biologists are primarily concerned with the biological meaning of the data sur-

46

rounding our predictions of transcription regulatory mechanisms. They specify the

input for our genomic analyses, and they interpret the output. Biologists? interpre-

tations involve connections between various analyses and external sources which may

partially be represented as a database query. Integration of information is essential

to an effective analysis of a bioinformatics problem.

Mathematicians are concerned with the mathematical details used in the analysis

process. In our case, they focus on statistical parameters and variations between sam-

pling runs. Database queries should aggregate this information for more convenient

interpretation. For example, a mathematician may want to analyze the variance of

an estimate of a parameter to a probability distribution under a certain set of condi-

tions. In an ideal scenario, a mathematician could query a historical database with

the conditions of interest and pull out the data they require.

Computer scientists are concerned with the software behind the analysis process.

In the case of this database system, the computer scientist will want a conceptual

schema and application programming interface (API) that facilitates easily connecting

our current software tools to the system while allowing a scalable interface for future

tools to be integrated. Obviously, software must populate the database and provide

an interface for other users to make meaningful queries, but the design of this system

as a whole must be open to interface with new generations of analysis software.

6.1.2 Existing Data and Tools

The database system is useless without data. To best demonstrate the benefits of the

system, the system should be designed to leverage results from our existing data and

tools. In particular, our current cross-species comparison analysis process employs

two primary tools: the Gibbs Recursive Sampler (Thompson et al., 2003) and the

Bayesian Motif Clustering (BMC) (Qin et al., 2003) application.

The Gibbs Recursive Sampler takes genomic sequences and statistical parameters

as input to produce potential transcription factor binding sites and corresponding

mathematical models as output. The database should track both the input and

output to maintain a clear record of experiments.

The Bayesian Motif Clustering application takes mathematical models of tran-

scription factor binding sites (often from the Gibbs Recursive Sampler) and statistical

parameters to produce clusters of potentially co-regulated genes. The database should

track the input and output, and it should maintain relationships between clustered

models from the BMC application and predictions of sites from the Gibbs Recursive

47

Sampler.

The Cyanobacteria analysis project mentioned earlier is a good test case for the

database system because it encompasses tens of thousands of loosely connected files.

Importing the data and our analysis results into the database demonstrates the po-

tential of the system to integrate information and make it more easily accessible.

6.1.3 Selecting the Database Management System

The enterprise level scope of this system requires an enterprise database manage-

ment system (DBMS). The DBMS of choice should have strong support for relational

integrity constraints, transactions, and stored procedures. Relational integrity is ex-

tremely important when integrating information from various sources. In the case of

this system, it is very useful to have the database verify that new records reference

valid old records. Many entries to the database require updating multiple tables. By

using transactions to update these tables, the whole process can be undone if updat-

ing a particular table fails. This greatly helps ensure the consistency of data in the

system. This system does not have any specific need to use stored procedures at this

time, but it seems quite possible that they will be useful in the future. For example,

stored procedures could be used to validate input from web users.

6.2 System Design & Analysis

6.2.1 Perspectives

The data in the system has been partitioned into various domains to facilitate orga-

nization. To allow for future expansion, we would like to have one domain for each

application using the software framework, with separate domains for data which is

application independent.

The first implementation of this database system captures input and output from

our Gibbs Sampler and BMC applications. Data from external sources is also shared

between these applications. To model these requirements, the applications and the

shared data comprise the three perspectives toward the database. A web interface

can be developed to query the system and present relevant data from each perspective

or a combination of perspectives.

48

6.2.2 System Data

Data to be captured is based on our current Gibbs Sampler and BMC reports, as well

as input data to these applications. The shared data (GenomeSharedData), Gibbs

Sampler (Gibbs), and BMC perspectives capture the following data:

Genome Shared Data Domain

ortholog promoter The ortholog promoter represents the location in a genome,

orientation, and confidence level of an ortholog relationship between a pair of

species.

intergenic location The intergenic location represents the location of intergenic

sequence upstream of a particular gene.

sequence data The sequence data represents the actual DNA sequence and location

within a genome.

Gibbs Domain

gibbs run The gibbs run represents the input to and output of a particular run of

the Gibbs sampler application.

gibbs analysis The gibbs analysis represents a set of Gibbs sampler application runs

grouped together by a user.

motif The motif represents the position weight matrix mathematical model of a

transcription factor binding site.

position The position represents the parameters for one of the positions of a motif.

binding site The binding site represents the location of a particular transcription

factor binding site.

binding site set The binding site set represents a set of binding sites which is gen-

erally related to a motif.

BMC Domain

bmc run The bmc run represents the input to and output of a particular run of the

BMC application.

bmc motif The bmc motif represents a mathematical model of a transcription factor

binding site. It may be related back to a regulon and/or motif from Gibbs.

49

bmc cluster The bmc cluster FD represents bmc motifs that have been clustered

together by the BMC application.

6.2.3 Semantic Data Model

The relations and functional dependencies for the domains are provided below.

Genome Shared Data Domain Relations & Functional Dependencies

• ortholog promoter: {genome, gene, orthologous species, blast e score,

reverse complement}
genome, gene, orthologous species → blast e score, reverse complement

• intergenic location: {genome, gene, start coordinate, end coordinate }
genome, gene → start coordinate, end coordinate

• sequence data: {genome, start coordinate, end coordinate, sequence}
genome, start coordinate, end coordinate → sequence

Gibbs Domain Relations & Functional Dependencies

• gibbs run: {output, gibbs run id, command, input, background composition,

priors, seed, version, frequency map, near optimal map, maximal map}
gibbs run id → output, command, input, background composition, priors,

seed, version, frequency map, near optimal map, maximal map

• position: {position id, gap, a composition, t composition, c composition,

g composition, motif id, position number}
position id → gap, a composition, t composition, c composition,

g composition, motif id, position number

position id ←← motif id

• motif: {motif id, gibbs run id}
motif id → gibbs run id

• binding site set: {binding site set id, motif id, gibbs run id}
binding site set id → motif id, gibbs run id

• binding site: {binding site set id, binding site id, genome, start coordinate,

end coordinate}
binding site id → binding site set id, genome, start coordinate,

end coordinate

50

BMC Domain Relations and Functional Dependencies

• bmc run: {bmc run id, 50 p iters, command, divergent genes, input, output,

seed, version}
bmc run id → 50 p iters, command, divergent genes, input, output, seed,

version

• bmc motif: {bmc motif id, bmc cluster id, p motif, palindrome,

present iterations, run id, regulon id}
bmc motif id → bmc cluster id, p motif, palindrome, present iterations,

run id, regulon id

• bmc cluster: {bmc cluster id, average bayes ratio, cluster palindrome,

cluster present iterations, fragmentation, proportion size average}
bmc cluster id → average bayes ratio, cluster palindrome,

cluster present iterations, fragmentation, proportion size average

6.2.4 Logical Data Model (Database Schema)

The database schema implements the functional dependencies and facilitates the ap-

plication perspectives. Entity-relationship diagrams for the schema are provided in

appendix B. Figure B.1 shows the complete schema. Figure B.2 is the Genome-

SharedData perspective, figure B.3 is the Gibbs perspective, and figure B.4 is the

BMC perspective.

6.2.5 The Database Management System

PostgreSQL was selected for the DBMS because it appears to be the most capable,

free, open source DBMS. In particular, PostgreSQL has strong support for relational

integrity constraints, transaction processing, and stored procedures, as required for

this system. Software libraries enabling access to a PostgreSQL database exist for a

multitude of programming languages, including C, C++, Java, Perl, and PHP.

6.2.6 The User Interface

A prototype user interface has been implemented for the World Wide Web. This

interface enables simple, platform-independent access to the database. The prototype

has been implemented using PHP and the Apache web server. Later implementations

51

may leverage Java 2 Enterprise Edition (J2EE) technology such as Java Server Pages

(JSPs) and Servlets to provide more advanced functionality.

The prototype interface is intended to illustrate only a subset of the benefits of this

database system. Specifically, it allows basic queries to be executed. These queries

should answer statistical questions about the biology in the data. For example, a

biologist might want to see all Gibbs Sampler runs which predicted transcription

factor binding sites for a specific gene in various genomes. Previously, queries such

as this are difficult to answer using our collection of loosely connected data files,

but they are significantly easier with this database system. The following queries

were developed (with input from the users) to provide sufficient evidence of basic

functionality:

1. Show all intergenic sequences from multiple species for a specific gene.

2. Show all Gibbs Sampler reports with binding sites predicted for a specific gene.

3. Show all Gibbs Sampler reports with predicted binding sites in a certain species

with a minimum MAP value (maximum a posteriori probability).

4. Show all Gibbs Sampler reports with predicted binding sites for a particular

gene with a minimum MAP value.

6.2.7 Application Software and Tools

To leverage our existing data and analysis reports, Perl scripts import existing data

into the database. The DNA sequences of interest for the Cyanobacteria project

are stored in approximately 1600 FASTA format files. These files are parsed, and

appropriate data is inserted into the GenomeSharedData perspective of the database.

Approximately 68,000 Gibbs Sampler reports exist, and these are mined for relevant

information to insert into the Gibbs perspective of the database. Only a few BMC

reports exist for this project, and they can be appropriately mined so their data can

be inserted into the BMC perspective of the database.

6.3 System Evaluation

6.3.1 Web Interface Prototype

To evaluate the database system, a prototype web interface was developed to interface

with the system. The prototype executes queries on the GenomeSharedData and

52

Gibbs perspectives. Appendix B.2 illustrates executing the example queries from

section 6.2.6. All queries begin at the query page, shown in figure B.5.

Query 1 Show all intergenic sequences from all species for gene groEL.

To execute this query, from the query page, the user selects groEL from the

topmost dropdown box, selects the“Get intergenic sequence data” radio button,

and clicks the submit button. The results appear in both tabular and FASTA

format for convenience. Please see figure B.6.

Query 2 Show all Gibbs Sampler reports with binding sites predicted for gene purA.

To execute this query, from the query page, the user selects purA from the

topmost dropdown box, selects the“Search Gibbs Sampler results”radio button,

and clicks the submit button. The results appear, as shown in figure B.7. From

a list of Gibbs Sampler reports, the user can choose to view the details of

a specific report by clicking the “View” link in the rightmost column. The

details of the report appear, as shown in figure B.8. From this page, there are

additional “View” links at the bottom associated with details about the motifs

(mathematical models) and predicted transcription factor binding sites. The

details on motifs and binding site predictions appear as shown in figures B.9

and B.10, respectively.

Query 3 Show all Gibbs Sampler reports with predicted binding sites in species TELO

with a minimum MAP value of 40.

To execute this query, from the query page, the user selects TELO in the first

dropdown box of the “Advanced Search” section, enters 40 for the minimum

MAP value, and clicks submit. The results appear similar to figure B.7, and

the user may continue to view further details from there.

Query 4 Show all Gibbs Sampler reports with predicted binding sites for gene AT103

with a minimum MAP value of 20.

To execute this query, from the query page, the user selects AT103 in the second

dropdown box of the “Advanced Search” section, enters 40 for the minimum

MAP value, and clicks submit. Again, the results appear similar to figure B.7,

and the user may continue to view further details from there.

53

6.4 Technical Documentation

6.4.1 The Tools

The current tools consist of three Perl and two Bourne Shell scripts to import data

to the database:

breakFa.pl This Perl script takes FASTA format sequence files and removes line

breaks from the sequences. This could have been included in the main se-

quence import script, but this is a generally useful utility. The utility is named

“breakFa.pl” because it breaks the FASTA (a.k.a. FA) format by removing line

breaks which are supposed to be present after every 60 characters of sequence

data.

parseIntergenics.pl This Perl script takes intergenic sequence files preprocessed

by breakFa.pl and creates SQL scripts which import the sequences into the

GenomeSharedData perspective of the database.

parseGibbs.pl This Perl script takes Gibbs Recursive Sampler report files and cre-

ates SQL scripts which import the appropriate data into the Gibbs perspective

of the database.

doInsert.sh This Bourne Shell script cycles through a set of intergenic files, runs

them through parseIntergenics.pl, and runs the resulting SQL scripts to insert

the sequences into the database.

dbImport.sh This Bourne Shell script cycles through a set of compressed Gibbs

report files, decompresses them, runs them through parseGibbs.pl, and runs the

resulting SQL scripts to import the reports into the database.

Additional scripts still need to be written to parse BMC reports and insert appropriate

data into the BMC perspective of the database.

6.4.2 The Web Interface Prototype

The web interface prototype consists of seven PHP pages. In their default configura-

tion, they assume that the PostgreSQL server is running on the same machine as the

Apache2/PHP4 web server. The connection options should be adjusted accordingly

if this is not the case. The connection options should also be adjusted for the correct

username and password to access the database. The current settings are appropriate

for the server used to test the prototype. The role of each PHP page follows:

54

start.php This is the main query page. All users should enter the web interface

here. For the basic queries (queries 1 and 2 above), this page calls

getOrthologInfo.php. For the advanced queries (queries 3 and 4 above), this

page calls getOrthologInfo2.php and getOrthologInfo3.php.

getOrthologInfo.php This page processes the basic queries and displays search

results as demonstrated in figures B.6 and B.7. In the case of a Gibbs report

search, the output gives the user the option to proceed to gibbsReport.php to

retrieve the details of a Gibbs report.

getOrthologInfo2.php This page processes advanced queries on species and MAP

value (query 3). Its output is similar to that of getOrthologInfo.php.

getOrthologInfo3.php This page processes advanced queries on gene and MAP

value (query 4). Its output is similar to that of getOrthologInfo.php.

gibbsReport.php This page queries for the details on a specific Gibbs report and

displays them to the user, as demonstrated in figure B.8. It allows the user

to call motif.php or bindingSiteSet.php to retrieve details on motifs or sets of

binding sites associated with that report.

motif.php This page displays the details of a motif associated with a Gibbs report,

as shown in figure B.9. The numbers are the parameters used by the Gibbs

Recursive Sampler for its product multinomial model of a motif.

bindingSiteSet.php This page displays the details about binding sites associated

with a motif from a Gibbs report, as shown in figure B.10.

6.5 Summary

This database design has been implemented and tested with the PostgreSQL rela-

tional database management system (The PostgreSQL Global Development Group,

2004). The database schema is portable to any relational database system support-

ing SQL and foreign key relational integrity constraints. Data from an unpublished

Cyanobacteria analysis project (McCue et al., 2006) was imported to test the system,

and a simple HTML/PHP (World Wide Web Consortium (W3C), 1997; The PHP

Group, 2004) interface was also developed on an Apache web server (Foundation,

2004). PHP was chosen because it allowed for rapid development and testing. A

55

more robust platform, such as the Java 2 Enterprise Edition (J2EE), may be appro-

priate for a more refined web interface.

56

Chapter 7

OrthoGibbs

7.1 The OrthoGibbs Application

The OrthoGibbs application is the first application developed under the BRASS

framework. OrthoGibbs implements a Gibbs Recursive Sampler with the Product

Phylogeny model for cis-regulatory elements. Most of this functionality is designed

as classes within the BRASS library, allowing the actual OrthoGibbs code to contain

only a user interface which connects data to the processing logic contained in the

library.

OrthoGibbs is also the next generation of the Gibbs Recursive Sampler (Thompson

et al., 2003). The BRASS framework provides a significantly cleaner code base and

allows modular expansion of functionality in the future.

7.1.1 Input Parameters

During initialization, OrthoGibbs reads an XML (The World Wide Web Consortium,

2006) input file to determine its sampling behavior. An example input file is shown

in figure 7.1. The example illustrates a typical run-time configuration. Parameters

are either XML tags or attributes of XML tags. An XML tag defines a section of

parameters, and its attributes provide additional details. Some tags also have nested

tags, allowing additional flexibility to specify parameters. A full list of parameters is

provided below.

7.1.1.1 The orthogibbs Tag

The orthogibbs tag is the root XML tag for an OrthoGibbs input file. The attributes

of this tag are: seed, numseeds, maxsites, sitesprior, iterations, and burnin.

57

<?xml version="1.0"?>

<orthogibbs seed="42" maxsites="2" iterations="10000">

<!-- declare sequence inputs with trees -->

<sequencedata alphabet="DNA" background="composition" fulltree="lexA.6.tree">

<sequence file="lexA.6.1.fa" format="FASTA" tree="lexA.6.1.tree" />

<sequence file="lexA.6.2.fa" format="FASTA" tree="lexA.6.2.tree" />

<sequence file="lexA.6.3.fa" format="FASTA" tree="lexA.6.3.tree" />

</sequencedata>

<!-- declare models -->

<!-- this declares a default motif for OrthoGibbs -->

<motif width="16" columns="phylogeny" pseudocounts="0.28" palindrome="on">

<substitutionprocess process="F81" />

</motif>

</orthogibbs>

Figure 7.1: Example OrthoGibbs Input

All attributes are optional. OrthoGibbs selects reasonable, but often suboptimal,

values if none are specified.

The seed attribute allows the user to specify a specific random number seed. By

running the program again with the same seed, the user should receive the same

results. The default is the computer system time.

The numseeds attribute allows the user to specify the number of times the sampler

should restart with a new seed for its random number generator. This allows the

sampler to escape unfavorable results which may be the result of an unfortunate

single seed. The default is 1.

The maxsites attribute allows the user to specify the maximum number of cis-

regulatory elements per sequence. This corresponds to the maximum recursion depth

in section 4.3.2. The default is 1.

The sitesprior attribute allows the user to specify a comma separated list of

probability densities for the prior probability of 0, 1, 2, ..., n sites per sequence, where

n is maxsites. The default is 1/(n + 1).

The iterations attribute allows the user to specify the number of sampling iter-

ations per seed. One iteration is a full cycle across all sequences under consideration.

The default is 1000.

The burnin attribute allows the user to specify the number of iterations from the

start of sampling to ignore for each seed. Early samples often contribute a high level

of noise to the sampling process. The default is 20% of the total number of iterations.

7.1.1.2 The sequencedata Tag

The sequencedata tag provides information about the input sequences to OrthoGibbs.

The attributes of this tag are: alphabet, background, and fulltree. All attributes

58

except fulltree are optional.

The alphabet attribute allows the user to specify the sequence alphabet, such as

DNA, RNA, or protein. The default is DNA.

The background attribute allows the user to specify composition or unified for

the background model. The composition setting uses the background composition as

calculated directly from letter frequencies in the sequence data. The unified setting

uses position specific background model information from the output of the Unified

program (Liu & Lawrence, 1999). The default is composition.

The fulltree attribute allows the user to specify a file containing the phylogenetic

tree (in Newick format (Joseph Felsenstein, 1986)) of all sequences in the analysis.

This tree is used to compute sequence weights as described in section 4.4.1.

7.1.1.3 The sequence Tag

The sequence tag provides information about one clade of input sequences. A clade

is a set of globally aligned sequences or an individual, unaligned sequence. The

attributes of this tag are: file, format, tree, and background. file and tree are

mandatory attributes, format is an optional attribute, and background is mandatory

when Unified background model information will be used. More than one sequence

tag should be provided as nested tags to the sequencedata tag.

The file attribute allows the user to specify a file containing the sequence data

for the clade.

The format attribute allows the user to specify the file format for the file contain-

ing the sequence data for the clade. Currently, only FASTA is supported. The default

is FASTA.

The tree attribute specifies the phylogenetic tree (in Newick format (Joseph

Felsenstein, 1986)) of the clade. This tree is used in the computation of Felsenstein’s

Algorithm.

The background attribute allows the user to specify a file containing Unified

background model information from the Unified program (Liu & Lawrence, 1999).

This attribute is ignored if sequence composition is being used for the background

model, but it is required if Unified output is being used for the background model.

7.1.1.4 The motif Tag

The motif tag provides information about a motif model for a cis-regulatory element.

The attributes of this tag are: width, columns, pseudocounts, and palindrome.

59

width and columns are mandatory, but pseudocounts and palindrome are optional.

More than one motif tag may be provided to instruct the sampler to sample multiple

models.

The width attribute allows the user to specify the width of the model. The width

is the number of adjacent letters of sequence which represent a cis-regulatory element.

The columns attribute allows the user to specify the type of model for a partic-

ular position in a cis-regulatory element. Currently, only phylogeny is supported,

indicating the product phylogeny model.

The pseudocounts attribute allows the user to specify a default Bayesian pseu-

docount which is used to account for the prior probability of an observation. The

default is 1.

The palindrome parameter allows the user to specify that a palindromic model

is to be used. When set to on, this implies that the second half of the model is the

reverse complement of the first half of the model. This constrains the model and

reduces its degrees of freedom. The default is a non-palindromic model.

7.1.1.5 The substitutionprocess Tag

The substitutionprocess tag provides information about the substitution process

used by Felsenstein’s Algorithm. This tag has one mandatory attribute: process.

Currently, only F81 is valid, indicating the Felsenstein 1981 substitution process. This

tag is always a nested tag of motif.

7.2 Evaluating Solutions

OrthoGibbs reports a solution after it has run for the specified number of iterations.

A solution is a set of potential cis-regulatory elements in the sequences under con-

sideration. The solution reported is called a “50% frequency solution”. After the

specified number of burn-in iterations, the sampler counts each time a cis-regulatory

element is sampled in any subsequent iteration. Any cis-regulatory element which is

sampled in at least 50% of the iterations after the burn-in period is reported in the

solution. This type of solution may also be called a “centroid” solution.

The centroid approach to evaluating solutions has two distinct advantages over a

maximum a posteriori (MAP) solution. First, counting samples is computationally

much simpler than calculating a probability. Second, the solution contains a represen-

tative sample of the most likely solutions within the sampling space. This approach

works extremely well for RNA secondary structure sampling, and it is likely to be

60

much more widely applicable (Ding et al., 2005). Intuitively, the centroid approach

accounts for some uncertainty about the molecular biology behind the mathematical

model. A maximum a posteriori or optimal solution is a single, likely solution under

a particular model. A centroid solution is a set of likely solutions under the model.

The true, biological solution is more likely to be represented in such a set than by a

single solution.

7.3 Testing OrthoGibbs on Synthetic Data

7.3.1 Generating the Data

Five data sets were created to simulate real data which could be processed by Or-

thoGibbs. Each data set consisted of 100 simulated intergenic regions containing 500

nucleotides upstream of a hypothetical gene from eight related species. The eight

species were chosen to simulate E. coli and its close relatives in the gamma pro-

teobacteria family:

1. Escherichia coli

2. Shigella flexneri

3. Salmonella enterica Typhi

4. Salmonella bongori

5. Citrobacter rodentium

6. Klebsiella pneumoniae

7. Proteus mirabilis

8. Vibrio cholera el Tor

These species are related by the tree shown in figure 7.2. The nucleotides were drawn

from the Felsenstein 1981 model of phylogeny (Felsenstein, 1981) using this tree.

The first synthetic data set is a negative control containing no simulated cis-

regulatory elements. The other four data sets contain one, two, three, or four planted

cis-regulatory elements, respectively. The planted cis-regulatory elements were also

drawn from the Felsenstein 1981 model using a 22 nucleotide position weight matrix

of cyclic AMP receptor protein (CRP) as the equilibrium distribution. CRP is a well

characterized cis-regulatory element present in all of these species. Its position weight

matrix is similar to the one shown in figure 1.1.

61

Figure 7.2: Phylogenetic Tree of Species in Test Data
ECOL: E. coli ; SFLE: S. flexneri ; SENT: S. enterica Typhi ; SBON: S. bongori ;
CROD: C. rodentium; KPNE: K. pneumoniae; PMIR: P. mirabilis; VCHO: V.
cholera el Tor

62

7.3.2 Running the Experiment

The parameters to OrthoGibbs are important for both obtaining and interpreting

results. The most commonly adjusted parameters are the pseudocounts for each

position in the model (motif) of the cis-regulatory element, the maximum number

of cis-regulatory elements per sequence, and the prior probabilities for the number

of cis-regulatory elements per sequence. For this experiment, uniform pseudocounts

of 0.28 were used for each position in the motif. These pseudocounts are used when

sampling an equilibrium distribution for Felsenstein’s Algorithm, and they provide

an expected value with one bit of information content. We also used a palindromic

motif in this experiment because many transcription factors, including CRP, have

palindromic cis-regulatory elements. We allowed up to two cis-regulatory elements

per sequence, and we provided uniform prior probabilities for 0, 1, or 2 sites per

sequence. We also assumed that the simulated sequences from the last two species

were independent and not globally alignable because this would be true if we were

using biological data.

7.3.3 Results

We measure our results in E. coli, our species of interest; true and false positives (hits

or misses against planted cis-regulatory elements) are only counted for predictions in

the global alignment containing the simulated E. coli sequence.

Generally, we are interested in three measures of performance: sensitivity, speci-

ficity, and positive predictive value. Sensitivity is the percentage of actual (or in

this case, planted) cis-regulatory elements correctly predicted by OrthoGibbs in the

positive control data. Specificity is the percentage of negative control data which is

correctly characterized as containing no cis-regulatory elements by OrthoGibbs.

To evaluate OrthoGibbs’s performance on the negative control data, we want to

count the total number of predictions and the number of intergenics with at least one

prediction. Every prediction in this data set is a false positive. Out of the 100 inter-

genics in the experiment, OrthoGibbs predicted only a single site in three intergenics.

This corresponds to specificity (by cis-regulatory element and by intergenic) of 97%.

To evaluate OrthoGibbs’s performance on the positive control data, we want to

answer the following questions:

1. How many predictions by OrthoGibbs overlap one of the 100N planted sites?

(true positive by site)

63

Data Set 1 Data Set 2 Data Set 3 Data Set 4

Question 1 17 116 154 176
Question 2 83 84 146 224
Question 3 5 2 0 0
Question 4 17 61 82 93
Question 5 83 45 100* 100*
Question 6 4 2 0 0

Sensitivity 17% 58% 51% 44%
PPV 77% 98% 100% 100%

Table 7.1: OrthoGibbs Results on Synthetic Positive Control Data
* Since a maximum of two sites per sequence were allowed, OrthoGibbs had to miss
at least one true site.

2. How many of the 100N sites are not predicted by OrthoGibbs? (false negative

by site)

3. How many predictions by OrthoGibbs do not overlap one of the 100N sites?

(false positive by site)

4. In how many of the 100 intergenics does OrthoGibbs find at least one true site?

(true positive by intergenic)

5. In how many of the 100 intergenics does OrthoGibbs miss at least one true site?

(false negative by intergenic)

6. In how many of the 100 intergenics does OrthoGibbs make at least one false

prediction? (false positive by intergenic)

For a prediction to overlap a planted site, we specify that it must overlap at least

half of the site. From these questions, we can calculate the sensitivity and positive

predictive value. The results for the four positive control data sets are shown in table

7.1. The data set number N corresponds to having 100N planted sites.

7.4 Testing OrthoGibbs on Real Data

7.4.1 Selecting the Data

A biological data set was selected from the gamma proteobacteria genomes listed in

section 7.3.1. The following criteria were used to select sequences for the data set:

64

1. The sequences must be intergenic regions upstream of orthologous genes which

are present in all eight species.

2. The E. coli sequence must contain an experimentally verified cis-regulatory

element.

3. The orthologous sequences from the first six species must be globally alignable

with CLUSTALW (Chenna et al., 2003) using its default parameters.

4. The intergenic sequence length must be 500 nucleotides or less. In bacterial

data, this is the typical region where cis-regulatory elements are expected.

These selection criteria yielded a data set containing 72 intergenic sequences.

7.4.2 Running the Experiment

The biological data set was processed under the same set of conditions described in

section 7.3.2. This is not ideal, but it is a reasonable way to analyze such a data

set without tuning the parameters for specific transcription factors or intergenic se-

quences. Many cis-regulatory elements in the gamma proteobacteria are palindromic

and less than 22 nucleotides long.

7.4.3 Results

The same statistics reported for the synthetic data were calculated and are reported

in table 7.2. Interpreting results for this data set is quite difficult. From the data

set defined in section 7.4.1, we have 109 detectable cis-regulatory elements. These

elements are deemed detectable because the experimentally verified cis-regulatory

element can be discovered in the E. coli sequence with a simple string search. The

distribution of detectable sites per intergenic is shown in figure 7.3.

Some of the 109 detectable cis-regulatory elements may not actually be detectable

to OrthoGibbs for various reasons. For example, the cis-regulatory element in E. coli

may have a gap in one or more of its orthologous counterparts introduced by the global

alignment process. OrthoGibbs cannot predict cis-regulatory elements in regions of

globally aligned sequence with gaps in any of the constituent sequences.

Since OrthoGibbs was run with a maximum of two sites per sequence, OrthoGibbs

cannot predict all of the sites in sequences which contain more than two detectable

65

Figure 7.3: Detectable Sites per Intergenic

sites. Of the 72 intergenic sequences in the data set, 9 contain more than two de-

tectable sites. Of the 109 detectable sites, 10 are not actually detectable to Or-

thoGibbs when run with a maximum of two sites per sequence.

Biological anomalies may also influence the detection of some cis-regulatory el-

ements. For example, two cis-regulatory elements upstream of the argR gene are

directly adjacent. One OrthoGibbs prediction can overlap two cis-regulatory ele-

ments.

Using heuristics, we were able to tune the prior probabilities on the number of

cis-regulatory elements per sequence to produce better results than those obtained

using uniform priors. These results are also shown in table 7.2.

66

Biological Data Set Biological Data Set, Tuned Priors

Question 1 25 28
Question 2 84 81
Question 3 26 21
Question 4 19 20
Question 5 60 60
Question 6 21 16

Sensitivity 23% 26%
PPV* 50% 57%

Table 7.2: OrthoGibbs Results on Biological Data
* Since this is biological data, PPV may be pessimistic because a false prediction may
be an unreported site.

67

Chapter 8

Discussion and Conclusions

8.1 Comparison of OrthoGibbs to Other Methods

Table 8.1 provides a brief overview of the similarities and differences between Or-

thoGibbs and its peer algorithms described in section 2.3. Direct comparisons be-

tween results produced by each application are extremely difficult to perform. This

is primarily due to the parameters which may be adjusted for each algorithm and/or

data set.

Benchmarking of similar algorithms has been performed by a large group of au-

thors, and their discussion regarding the difficulties of benchmarking these algorithms

is quite insightful (Tompa et al., 2005). They encountered the same difficulties dis-

cussed in chapter 7 with respect to generating and/or selecting data sets, tuning

parameters, and interpreting results.

8.2 Benefits of BRASS

One of the greatest problems in our field is the integration of data from multiple

sources (Chicurel, 2002). Bioinformatics data must be freely available in a machine-

readable format to foster collaboration (Stein, 2002) and ensure scientific integrity.

Many bioinformatics labs provide only a web interface to their data, and this makes it

difficult for other labs to verify their results or incorporate them into a new analysis.

The software framework will include an open data model accessible via standard

transport mechanisms (Dowell et al., 2001; Wilkinson & Links, 2002) to facilitate

these tasks.

68

Algorithm Type? Tree? Seq. Indep?

PhyloCon Optimization no yes
OrthoMEME EM no no

EMnEM EM yes no
PhyME EM yes no

CompareProspector Gibbs no yes
Wong Gibbs yes no

PhyloGibbs Gibbs yes** no
OrthoGibbs Gibbs yes no

Pre-align? > 2 Species? > 1Motif?

PhyloCon yes yes yes
OrthoMEME no no no

EMnEM yes yes no
PhyME yes yes no

CompareProspector yes yes yes
Wong no yes no

PhyloGibbs yes* yes yes
OrthoGibbs yes* yes yes

Table 8.1: Comparison of Algorithms
* unaligned data may also be used, and it is treated as phylogenetically independent
** officially supports star topology only
Description of columns: (1) What type of algorithm is used? (2) Is a phylogenetic
tree used? (3) Are the sequences considered statistically independent? (4) Must the
orthologous sequences be aligned? (5) Can sequences from more than two species be
considered? (6) Can more than one motif be discovered?

69

8.2.1 Software Framework Benefits

The software framework provides an object representation for the Gibbs Phyloge-

netic Sampler and generically lays the groundwork to accommodate other statistical

bioinformatics applications. Many sampling strategies, biological data structures, and

mathematical models may be shared between various analysis applications. For ex-

ample, the Bayesian Motif Clustering (BMC) application (Qin et al., 2003) and the

SCAN application (Neuwald et al., 1995) can use product multinomial motifs from

the Gibbs Recursive Sampler as input. If future versions of these applications use

the framework, more seamless integration will be possible. Instead of passing inter-

mediate files between applications, the data objects can directly be shared. As an

example, a new class hierarchy may provide some of the software glue to process a

workflow leading from Gibbs to either of these applications.

One advantage of abstractly defining our methods in a software framework is that

it will be easier to develop new applications that use components or patterns from

other applications. For example, a software developer could write a composite appli-

cation that encompasses the functionality of several framework applications with a

shared user interface. It would also be possible to reuse specific pieces of an applica-

tion within another, such as a sampling procedure.

Another advantage of the framework is that it will ease the transition to grid com-

puting. Many statistical bioinformatics applications can take advantage of distributed

or parallel processing. Implementing distributed or parallel applications is often a

challenge because the computational process scheduling can become intertwined with

the application specific data processing. With the framework’s object-oriented design,

it will be easier to separate the process scheduling logic from the application logic.

For example, it is typical to run the same application with many different random

number generator seeds and take the best result. A grid-aware application might

accomplish this by instantiating and executing several sampler objects. It might even

be possible for the sampler objects in this application to share constant data directly

depending on the grid’s memory structure. Developing an application in this manner

is much simpler than rewriting an entire application to be aware of all of these details.

8.2.2 Database System Benefits

The database system provides a standard representation of our most important data

structures, means of integrating information from various sources, a central repository

for long term storage, and accessibility which conveniently facilitates the creation of

70

web interfaces.

With a standard representation of data structures, new applications developed for

sequence analysis can have an authoritative, language independent reference. The

data model can be represented in UML, and a competent software developer can

design matching structures in any programming language. For example, as mentioned

earlier, the BMC application uses some of the output of the Gibbs Sampler as input.

Currently, the process of bringing data from the Gibbs Sampler to BMC involves

several Perl scripts parsing many text files. Also, the formats of those text files may

change from time to time, and the Perl scripts have to be modified. With the data

stored in the database, BMC needs to know only the structures in the database, which

are less likely to change (though they may be transparently expanded).

With an integrated source for all of our data, queries which were previously very

impractical can be greatly simplified. Currently, some queries involve writing Perl

scripts to parse multitudes of files. With the database, some of these queries will

require writing only some SQL code. Even in the worst case of a very complex SQL

query, the user will not have to worry about parsing many files of multiple formats

to integrate the necessary information.

With a central repository for long term storage, our data will be more easily

accessible to scientists both inside and outside my lab. Currently, results that may

interest multiple people in my lab are scattered across several file systems on a shared

file server. Instead of searching various users’ home directories and project directories,

we will only need to search through our database schema.

When we want to make results public, we often take some sort of static snapshot

and make it viewable on the web. It is not always clear where the data in the web

version originated, and this makes it much less useful. It can also be quite difficult

to track our process backwards to find the origin. By creating a web interface to

the database, we can directly tie our front end interface to our back end processing.

We can know where the data originates because it is being pulled directly from the

database.

71

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. (2002)

Molecular Biology of the Cell. 4th edition
”

Garland Science.

Bailey, T. L. & Elkan, C. P. (1994) Fitting a mixture model by expectation maximiza-

tion to discover motifs in biopolymers. In Proceedings of the Second International

Conference on Intelligent Systems for Molecular Biology, (Altman, R., Brutlag, D.,

Karp, P., Lathrop, R. & Searls, D., eds), pp. 28–36 American Association for Arti-

ficial Intelligence AAAI Press, Stanford University, Palo Alto, CA.

Benos, P., Lapedes, A. & Stormo, G. (2002) Is there a code for protein-DNA recog-

nition? Probab(ilistical)ly... Bioessays, 24 (5), 466–75.

Blanchette, M., Kent, W. J., Riemer, C., Elnitski, L., Smit, A. F., Roskin, K. M.,

Baertsch, R., Rosenbloom, K., Clawson, H., Green, E. D., Haussler, D. & Miller, W.

(2004) Aligning Multiple Genomic Sequences With the Threaded Blockset Aligner.

Genome Res., 14 (4), 708–715.

Boost.org (2004). C++ Boost Libraries. http://www.boost.org/.

Brudno, M., Do, C. B., Cooper, G. M., Kim, M. F., Davydov, E., Program, N.

C. S., Green, E. D., Sidow, A. & Batzoglou, S. (2003) LAGAN and Multi-LAGAN:

Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA. Genome Res.,

13 (4), 721–731.

Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G.

& Thompson, J. D. (2003) Multiple sequence alignment with the Clustal series of

programs. Nucl. Acids Res., 31 (13), 3497–3500.

Chicurel, M. (2002) Bioinformatics: bringing it all together. Nature, 419 (6908),

751, 753, 755 passim.

72

Cole, J., Chai, B., Marsh, T., Farris, R., Wang, Q., Kulam, S., Chandra, S., Mc-

Garrell, D., Schmidt, T., Garrity, G. & Tiedje, J. (2003) The Ribosomal Database

Project (RDP-II): previewing a new autoaligner that allows regular updates and the

new prokaryotic taxonomy. Nucleic Acids Res, 31 (1), 442–3.

Ding, Y., Chan, C. Y. & Lawrence, C. E. (2005) RNA secondary structure prediction

by centroids in a Boltzmann weighted ensemble. RNA, 11 (8), 1157–1166.

Ding, Y. & Lawrence, C. (2003) A statistical sampling algorithm for RNA secondary

structure prediction. Nucleic Acids Res, 31 (24), 7280–301.

Dowell, R., Jokerst, R., Day, A., Eddy, S. & Stein, L. (2001) The distributed anno-

tation system. BMC Bioinformatics, 2 (1), 7.

Fayad, M. E., Schmidt, D. C. & Johnson, R. E., eds (1999a) Building Application

Frameworks: Object-Oriented Foundations of Framework Design. John Wiley &

Sons.

Fayad, M. E., Schmidt, D. C. & Johnson, R. E., eds (1999b) Implementing Applica-

tion Frameworks: Object-Oriented Frameworks at Work. John Wiley & Sons.

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likeli-

hood approach. J Mol Evol, 17 (6), 368–376. PubMed 7288891.

Felsenstein, J. (1993) PHYLIP (Phylogeny Interface Package) 3.5c. Department of

Genetics, University of Washington, Seattle, WA.

Felsenstein, J. (2001) Taking variation of evolutionary rates between sites into ac-

count in inferring phylogenies. J Mol Evol, 53 (4–5), 447–455. PubMed 11675604.

Felsenstein, J. (2003) Inferring Phylogenies. Sinauer Associates.

Felsenstein, J. & Churchill, G. A. (1996) A hidden Markov model approach to vari-

ation among sites in rate of evolution. Mol Biol Evol, 13 (1), 93–104. PubMed

8583911.

Foundation, T. A. S. (2004). Apache HTTP server 2.0. http://httpd.apache.org/.

Fox, G., Stackebrandt, E., Hespell, R., Gibson, J., Maniloff, J., Dyer, T., Wolfe, R.,

Balch, W., Tanner, R., Magrum, L., Zablen, L., Blakemore, R., Gupta, R., Bonen,

L., Lewis, B., Stahl, D., Luehrsen, K., Chen, K. & Woese, C. (1980) The phylogeny

of prokaryotes. Science, 209 (4455), 457–63.

73

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (1995) Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley.

Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating of the human-ape splitting by

a molecular clock of mitochondrial DNA. J Mol Evol, 22 (2), 160–174. PubMed

3934395.

Heidelberg, J., Paulsen, I., Nelson, K., Gaidos, E., Nelson, W., Read, T., Eisen,

J., Seshadri, R., Ward, N., Methe, B., Clayton, R., Meyer, T., Tsapin, A., Scott,

J., Beanan, M., Brinkac, L., Daugherty, S., DeBoy, R., Dodson, R., Durkin, A.,

Haft, D., Kolonay, J., Madupu, R., Peterson, J., Umayam, L., White, O., Wolf, A.,

Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Berry, K., Lee, C., Mueller, J.,

Khouri, H., Gill, J., Utterback, T., McDonald, L., Feldblyum, T., Smith, H., Venter,

J., Nealson, K. & Fraser, C. (2002) Genome sequence of the dissimilatory metal

ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol, 20 (11), 1118–23.

Hertz, G. & Stormo, G. (1999) Identifying DNA and protein patterns with statisti-

cally significant alignments of multiple sequences. Bioinformatics, 15 (7-8), 563–77.

Hertz, G. Z. & Stormo, G. D. (1994) Identification of consensus patterns in unaligned

DNA and protein sequences: a large-deviation statistical basis for penalizing gaps.

In Proceedings of the Third International Conference on Bioinformatics and Genome

Research, (Lim, H. A. & Cantor, C. R., eds), pp. 201–216 World Scientific Publishing

Co., Singapore, Tallahassee, FL.

Hillis, D. M., Moritz, C. & Mable, B. K., eds (1996) Molecular Systematics. 2nd

edition
”

Sinauer Associates, Inc., Sunderland, MA.

Holmes, I. & Bruno, W. J. (2001) Evolutionary HMMs: a Bayesian approach to

multiple alignment. Bioinformatics, 17 (9), 803–820.

Holt, J. G., ed. (1994) Bergey’s Manual of Determinative Bacteriology. 9th edition
”

Williams & Wilkins, Baltimore.

Jacob, F. & Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of

proteins. J Mol Biol, 3, 318–56.

Jamison, D. (2003) Open bioinformatics. Bioinformatics, 19 (6), 679–80.

Johnson, R. E. (1997) Frameworks = (components + patterns). Commun. ACM,

40 (10), 39–42.

74

Joseph Felsenstein (1986). The Newick tree format.

http://evolution.genetics.washington.edu/phylip/newicktree.html.

Jukes, T. H. & Cantor, C. (1969) Evolution of protein molecules. In Mammalian

Protein Metabolism, (Munro, H. M., ed.), vol. 3,. Academic Press New York, NY

pp. 21–132.

Kimura, M. (1980) A simple method for estimating evolutionary rates of base sub-

stitutions through comparative studies of nucleotide sequences. J Mol Evol, 16 (2),

111–120. PubMed 7463489.

Lanave, C., Preparata, G., Saccone, C. & Serio, G. (1984) A new method for calcu-

lating evolutionary substitution rates. J Mol Evol, 20 (1), 86–93. PubMed 6429346.

Lawrence, C., Altschul, S., Boguski, M., Liu, J., Neuwald, A. & Wootton, J. (1993)

Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment.

Science, 262 (5131), 208–14.

Lawrence, C. & Reilly, A. (1990) An expectation maximization (EM) algorithm

for the identification and characterization of common sites in unaligned biopolymer

sequences. Proteins, 7 (1), 41–51.

Lewin, B. (2000) Genes VII. Oxford University Press.

Li, X. & Wong, W. H. (2005) Sampling motifs on phylogenetic trees. PNAS, 102

(27), 9481–9486.

Liu, J. & Lawrence, C. (1999) Bayesian inference on biopolymer models. Bioinfor-

matics, 15 (1), 38–52.

Liu, J., Neuwald, A. & Lawrence, C. (1995) Bayesian models for multiple local

sequence alignment and Gibbs sampling strategies. J. Amer Stat. Assoc., 90,

1156–70.

Liu, J. S. (1994) The Collapsed Gibbs Sampler in Bayesian Computations With

Applications to a Gene Regulation Problem. Journal of the American Statistical

Association, 89 (427), 958–966.

Liu, J. S. (2001) Monte Carlo Strategies in Scientific Computing. Springer Series in

Statistics, Springer-Verlag, New York, NY.

75

Liu, J. S., Neuwald, A. F. & Lawrence, C. E. (1999) Markovian Structures in Bio-

logical Sequence Alignments. J. Amer. Statist. Assoc., 94, 1–15.

Liu, X. S., Brutlag, D. L. & Liu, J. S. (2001) BioProspector: discovering conserved

DNA motifs in upstream regulatory regions of co-expressed genes. In Pacific Sympo-

sium on Biocomputing, (Altman, R. B., Dunker, A. K., Hunker, L., Lauderdale, K.

& Klein, T. E., eds), pp. 127–138 World Scientific Publishing Co., Singapore, The

Orchid at Mauna Lani, HI.

Liu, Y., Liu, X. S., Wei, L., Altman, R. B. & Batzoglou, S. (2004) Eukaryotic

Regulatory Element Conservation Analysis and Identification Using Comparative

Genomics. Genome Res., 14 (3), 451–458.

Lovley, D. & Lloyd, J. (2000) Microbes with a mettle for bioremediation. Nat

Biotechnol, 18 (6), 600–1.

Mangalam, H. (2002) The Bio* toolkits–a brief overview. Brief Bioinform, 3 (3),

296–302.

Matthews, B. (1988) Protein-DNA interaction. No code for recognition. Nature,

335 (6188), 294–5.

McCue, L., Thompson, W., Carmack, C. & Lawrence, C. (2002) Factors influencing

the identification of transcription factor binding sites by cross-species comparison.

Genome Res, 12 (10), 1523–32.

McCue, L., Thompson, W., Carmack, C., Ryan, M., Liu, J., Derbyshire, V. &

Lawrence, C. (2001) Phylogenetic footprinting of transcription factor binding sites

in proteobacterial genomes. Nucleic Acids Res, 29 (3), 774–82.

McCue, L. A., Smith, T. M., Thompson, W., Palumbo, M. & Lawrence, C. (2006).

Whole genome phylogenetic footprinting and regulon prediction in cyanobacteria.

In preparation.

Mitchison, G. J. (1999) A probabilistic treatment of phylogeny and sequence align-

ment. J Mol Evol, 49 (1), 11–22.

Mitchison, G. J. & Durbin, R. (1995) Tree-based maximal likelihood substitution

matrices and hidden Markov models. J Mol Evol, 41, 1139–1151.

76

Moses, A., Chiang, D. & Eisen, M. (2004) Phylogenetic motif detection by

expectation-maximization on evolutionary mixtures. In Ninth Pacific Symposium

on Biocomputing (PSB).

Nealson, K. & Little, B. (1997) Breathing manganese and iron: solid-state respira-

tion. Advances in Applied Microbiology, 45, 213–39.

Neuwald, A., Liu, J. & Lawrence, C. (1995) Gibbs motif sampling: detection of

bacterial outer membrane protein repeats. Protein Sci, 4 (8), 1618–32.

Newberg, L. A., McCue, L. A. & Lawrence, C. E. (2005) The Relative Inefficiency of

Sequence Weights Approaches in Determining a Nucleotide Position Weight Matrix.

Statistical Applications in Genetics and Molecular Biology, 4, (reviewed).

Neyman, J. (1971) Molecular studies of evolution: a source of novel statistical prob-

lems. In Statistical Decision Theory and Related Topics, (Gupta, S. S. & Yackel, J.,

eds),. Academic Press New York, NY pp. 1–27.

Olsen, G., Woese, C. & Overbeek, R. (1994) The winds of (evolutionary) change:

breathing new life into microbiology. J Bacteriol, 176 (1), 1–6.

Pabo, C. & Sauer, R. (1984) Protein-DNA recognition. Annu Rev Biochem, 53,

293–321.

Prakash, A., Blanchette, M., Sinha, S. & Tompa, M. (2004) Motif discovery in

heterogeneous sequence data. In Ninth Pacific Symposium on Biocomputing (PSB).

Qin, Z., McCue, L., Thompson, W., Mayerhofer, L., Lawrence, C. & Liu, J. (2003)

Identification of co-regulated genes through Bayesian clustering of predicted regula-

tory binding sites. Nat Biotechnol, 21 (4), 435–9.

Quackenbush, J. (2003) Open-source software accelerates bioinformatics. Genome

Biol, 4 (9), 336.

Rice, P., Longden, I. & Bleasby, A. (2000) EMBOSS: the European Molecular Biol-

ogy Open Software Suite. Trends Genet, 16 (6), 276–7.

Roth, F. P., Hughes, J. D., Estep, P. W. & Church, G. M. (1998) Finding DNA

regulatory motifs within unaligned noncoding sequences clustered by whole-genome

mRNA quantitation. Nat. Biotech., 16 (10), 939–945.

77

Schmidt, D. C., Gokhale, A. & Natarajan, B. (2004) Frameworks: Why They are

Important and How to Apply Them Effectively. ACM Queue magazine, 2 (5),

(advance publication on author’s web page).

Schneider, T. & Stephens, R. (1990) Sequence Logos: A New Way to Display Con-

sensus Sequences. Nucl. Acids Res., 18, 6097–6100.

Siddharthan, R., Siggia, E. D. & van Nimwegen, E. (2005) PhyloGibbs: A Gibbs

Sampling Motif Finder That Incorporates Phylogeny. PLoS Computational Biology,

1 (7).

Siepel, A. & Haussler, D. (2004) Phylogenetic estimation of context-dependent sub-

stitution rates by maximum likelihood. Mol Biol Evol, 21 (3), 468–488. PubMed

14660683.

Smith, T. M. (2003). Computationally inferring the number of transcription factor

binding motifs from DNA sequence data. Master’s thesis, Rensselaer Polytechnic

Institute. Adviser: Charles E. Lawrence.

Stein, L. (2002) Creating a bioinformatics nation. Nature, 417 (6885), 119–20.

Stormo, G. D. & Hartzell, 3rd, G. W. (1989) Identifying protein-binding sites from

unaligned DNA fragments. Proc Natl Acad Sci U S A, 86 (4), 1183–1187.

Stroustrup, B. (2000) The C++ Programming Language. Special 3rd edition
”

Addison-Wesley.

The Apache Software Foundation (2005). Xerces C++ Parser.

http://xml.apache.org/xerces-c/.

The PHP Group (2004). PHP 4.3. http://www.php.net/.

The PostgreSQL Global Development Group (2004). PostgreSQL 7.4.

http://www.postgresql.org/.

The World Wide Web Consortium (2006). Extensible Markup Language (XML).

http://www.w3.org/XML/.

Thomas, J. W., Touchman, J. W., Blakesley, R. W., Bouffard, G. G., Beckstrom-

Sternberg, S. M., Margulies, E. H., Blanchette, M., Siepel, A. C., Thomas, P. J.,

McDowell, J. C., Maskeri, B., Hansen, N. F., Schwartz, M. S., Weber, R. J., Kent,

W. J., Karolchik, D., Bruen, T. C., Bevan, R., Cutler, D. J., Schwartz, S., Elnitski,

78

L., Idol, J. R., Prasad, A. B., Lee-Lin, S. Q., Maduro, V. V., Summers, T. J.,

Portnoy, M. E., Dietrich, N. L., Akhter, N., Ayele, K., Benjamin, B., Cariaga, K.,

Brinkley, C. P., Brooks, S. Y., Granite, S., Guan, X., Gupta, J., Haghighi, P., Ho,

S. L., Huang, M. C., Karlins, E., Laric, P. L., Legaspi, R., Lim, M. J., Maduro,

Q. L., Masiello, C. A., Mastrian, S. D., McCloskey, J. C., Pearson, R., Stantripop,

S., Tiongson, E. E., Tran, J. T., Tsurgeon, C., Vogt, J. L., Walker, M. A., Wetherby,

K. D., Wiggins, L. S., Young, A. C., Zhang, L. H., Osoegawa, K., Zhu, B., Zhao, B.,

Shu, C. L., De Jong, P. J., Lawrence, C. E., Smit, A. F., Chakravarti, A., Haussler,

D., Green, P., Miller, W. & Green, E. D. (2003) Comparative analyses of multi-

species sequences from targeted genomic regions. Nature, 424 (6950), 788–793.

PubMed 12917688.

Thompson, W., Palumbo, M. J., Wasserman, W. W., Liu, J. & Lawrence, C. (2004)

Decoding human regulatory circuits. Genome Res., 14, (reviewed).

Thompson, W., Rouchka, E. & Lawrence, C. (2003) Gibbs Recursive Sampler: find-

ing transcription factor binding sites. Nucleic Acids Res, 31 (13), 3580–5.

Thorne, J. L., Kishino, H. & Felsenstein, J. (1991) An evolutionary model for max-

imum likelihood alignment of DNA sequences. J Mol Evol, 33 (2), 114–124.

Thorne, J. L., Kishino, H. & Felsenstein, J. (1992) Inching toward reality: an im-

proved likelihood model of sequence evolution. J Mol Evol, 34 (1), 3–16.

Tompa, M., Li, N., Bailey, T. L., Church, G. M., De Moor, B., Eskin, E., Favorov,

A. V., Frith, M. C., Fu, Y., Kent, W. J., Makeev, V. J., Mironov, A. A., Noble,

W. S., Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van

Helden, J., Vandenbogaert, M., Weng, Z., Workman, C., Ye, C. & Zhu, Z. (2005)

Assessing computational tools for the discovery of transcription factor binding sites.

Nat Biotechnol, 23 (1), 137–144.

van Heesch, D. (2005). Doxygen. http://www.doxygen.org/.

Voet, D. & Voet, J. G. (2004) Biochemistry. 3rd edition
”

Wiley Text Books.

Wang, T. & Stormo, G. D. (2003a) Combining phylogenetic data with co-regulated

genes to identify regulatory motifs. Bioinformatics, 19 (18), 2369–2380.

Wang, T. & Stormo, G. D. (2003b) Combining phylogenetic data with co-regulated

genes to identify regulatory motifs. Bioinformatics, 19 (18), 2369–2380.

79

Wilkinson, M. & Links, M. (2002) BioMOBY: an open source biological web services

proposal. Brief Bioinform, 3 (4), 331–41.

Woese, C. & Fox, G. (1977) Phylogenetic structure of the prokaryotic domain: the

primary kingdoms. Proc Natl Acad Sci U S A, 74 (11), 5088–90.

Woese, C. R., Fox, G. E., Zablen, L., Uchida, T., Bonen, L., Pechman, K., Lewis,

B. J. & Stahl, D. (1975) Conservation of Primary Structure in 16S rRNA. Nature,

254, 83–85.

Workman, C. & Stormo, G. (2000) ANN-Spec: a method for discovering transcrip-

tion factor binding sites with improved specificity. Pac Symp Biocomput, 5, 467–78.

World Wide Web Consortium (W3C) (1997). HyperText markup language HTML

4.01. http://www.w3c.org/MarkUp/.

Yang, Z. (1993) Maximum likelihood estimation of phylogeny from DNA sequences

when substitution rates differ over sites. Mol. Biol. Evol., 10, 1396–1401.

Yang, Z. (1994a) Estimating the pattern of nucleotide substitution. J Mol Evol, 39

(1), 105–111. PubMed 8064867.

Yang, Z. (1994b) Maximum likelihood phylogenetic estimation from DNA sequences

with variable rates over sites: approximate methods. J Mol Evol, 39 (3), 306–314.

PubMed 7932792.

Yang, Z. (1995) A space-time process model for the evolution of DNA sequences.

Genetics, 139 (2), 993–1005.

Zuckerkandl, E. & Pauling, L. (1965) Molecules as documents of evolutionary history.

J Theor Biol, 8 (2), 357–66.

80

Appendix A

BRASS Supplemental Materials

A.1 BRASS UML Diagrams

The UML diagrams on the following pages illustrate the structures and interfaces of

all major components in the BRASS library.

81

Figure A.1: BRASS::IO Core Classes

82

Figure A.2: BRASS::IO Annotation Classes

83

Figure A.3: BRASS::IO Sequence Classes

84

Figure A.4: BRASS::Samplers Classes

85

Figure A.5: BRASS::Math Overview

86

Figure A.6: BRASS::Math Motif Related Classes

87

Figure A.7: BRASS::Math Background Classes

88

Figure A.8: BRASS::Math Factory & Models

89

Figure A.9: BRASS::Math Felsenstein Algorithm Classes

90

Appendix B

BRASS Database System

Supplemental Materials

B.1 ER Diagrams

The ER diagrams on the following pages illustrate the database schema.

91

Figure B.1: Complete Database Schema (Please see detail diagrams B.2, B.3, B.4)

92

Figure B.2: Genome Shared Data Domain Schema

93

Figure B.3: Gibbs Domain Schema
94

Figure B.4: BMC Domain Schema

95

B.2 Web Interface Illustrations

The screen captures on the following pages illustrate queries executing on the database

system. Please see section 6.3.1 for more information.

96

Figure B.5: The Prototype Database Query Page

97

Figure B.6: Displaying Intergenic Sequence Data

98

Figure B.7: Searching Gibbs Sampler Reports

99

Figure B.8: Details of a Gibbs Sampler Report

100

Figure B.9: Details of a Motif

101

Figure B.10: Details of Transcription Factor Binding Site Predictions

102

