OrthoGibbs & PhyloScan

A comparative genomics approach to locating transcription factor binding sites

Lee Newberg, Wadsworth Center, 6/19/2007

Acknowledgments

Team:

- C. Steven Carmack (Wadsworth)
- Sean P. Conlan (Columbia)
- Charles E. Lawrence (Brown)
- Lee Ann McCue (Pacific Northwest NL)
- Thomas M. Smith (MIT Lincoln Laboratory)
- William A. Thompson (Brown)

Resources:

- Wadsworth Center (& use of the CMBS Core Facility)
- Rensselaer Polytechnic Institute
- NIH/NHGRI: K25 "Mentored Career Award" (LAN), R01 (CEL)
- Department of Energy awards (CEL, LAM)

National Human Genome Research Institute

6/19/2007

Relevance

The identification and characterization of functional, non-coding DNA sequence elements is important

Alberts, Johnson, Lewis, Raff, Roberts, & Walter, *Molecular Biology of the Cell*, 4th Edition, 2002

- ... for the understanding of cell function, differentiation, and pathology
- ... because the elements affect both the products of genes and when and to what extent the genes are expressed

6/19/2007

Previous Approaches

Look for overrepresented DNA patterns (motifs). Additional biases:

- Frequency (per promoter, genome)
- Positioning (relative to +1, TFBSs)
- Size
- Shape (palindromic, "off"-positions)
- Ad hoc evolutionary models

Gibbs Recursive Sampler. Thompson, Rouchka, & Lawrence, *Nucleic Acids Res*, 2003

These are Crp & PurR motifs. Cameron & Redfield, Nucleic Acids Res, 2006

6/19/2007

However ...

Siddharthan, Siggia & van Nimwegen, PLoS Comput Biol, 2005

In the results:

- Too many omissions Low sensitivity
- Too many false discoveries
 - Low positive predictive value
- Furthermore: new sequencing technologies \rightarrow progress on deciphering gene regulation will lag further behind the production of the experimental results that harbor its understanding

6/19/2007

Research Objective

Howard-Ashby, Materna, Brown, Tu, Oliveri, Cameron, & Davidson, Dev Biol, 2006

Significantly decrease false positives and false negatives as a fraction of actual sites ... to greatly ease the task of decoding gene regulatory circuits

Copyright © 2001-2006 Hamid Bolouri and Eric Davidson

6/19/2007

Our Approach, 1 of 2

Rigorously model evolution

- Organize species into clades, with multisequence alignments
- Phylogenetic tree for each clade
- Model of selection pressures

Seek binding sites that are consistent with the phylogenetic model – in addition to criteria for overrepresentation, positioning, size, & shape

7

Lee Newberg

6/19/2007

Our Approach, 2 of 2

Employ Centroids ... seek the region of solution space containing the most posterior probability ... rather than the single solution with the most posterior probability

... faster, more accurate

6/19/2007

Payoff

 OrthoGibbs –for *de novo* discovery
 PhyloScan – for known-pattern search
 ... to ease reconstruction of gene regulatory circuits
 ... to further our understanding of cell function, differentiation, and pathology
 ... for the betterment of human health

Our Approach: Phylogenetic Tree

This tree is approximate; built from a "stretched" 16S rRNA gene tree. Edge length = number of mutations expected per 1,000 nucleotides of junk. Observe clades: *Pasteurellales, Vibrionales, Enterobacteriales, P. mirabilis*

6/19/2007

Our Approach: Selection Pressures Model

Model of Halpern & Bruno, *Mol Biol Evol*, 1998 – reverse engineers fitnesses (and hence fixation probabilities) from equilibrium

For various selection equilibria, the probability of a nucleotide remaining fixed, as a function of phylogenetic distance

Our Approach: Centroid Solution

Peak at 100 is the Maximum Likelihood Estimator (MLE) or Maximum A posteriori Probability (MAP). Peak at 250 is the Centroid Estimator

6/19/2007

OrthoGibbs

Example (fictitious) tree tested by Siddharthan, Siggia & van Nimwegen, PLoS Comput Biol,

Discovering transcription factor binding sites *de novo*

- Multisequence alignments helpful, but not required
- Phylogenetic tree required to relate multiply aligned sequences within each clade
- GGCCGGTGCTATTACG ... GCACGGAGTTATGCGA S. cerevisiae GGTCGGTGCTATCACG ... TCGCGGAGGTATAGGA S. paradoxus GGCCTGTGTTATTTCG ... GCGCGGTGTTATACGA S. mikatae AACCGGTGTTATTACA ... GCGCGGAGTTATAAAG S. kudriavzevii AGACGGTGTTATGGCA ... ACGCGGAGGTATGCGG S. bayanus
- - Multiple instances within a sequence is <u>helpful</u>

6/19/2007

OrthoGibbs: Markov Chain Monte Carlo

Start with a randomly guessed solution
Repeat for many iterations:

Throw away part of the solution
Extend remainder to full solution

From record of each iteration's solution, take census, compute centroid

OrthoGibbs: Each iteration

- Updates locations of proposed binding sites – via Gibbs Sampling
- Updates motifs that describe the binding sites – via approximate sampling, corrected with Metropolis-Hastings test
- ...1234567890...1234567890... GGCCGGTGCTATTACG ... GCACGGAGTTATGCGA S. cerevisiae GGTCGGTGCTATCACG ... TCGCGGAGGTATAGGA S. paradoxus GGCCTGTGTTATTTCG ... GCGCGGGTGTTATACGA S. mikatae AACCGGTGTTATTACA ... GCGCGGAGTTATAAAG S. kudriavzevii AGACGGTGTTATGGCA ... ACGCGGAGGTATGCGG S. bayanus

Achieves "detailed balance" – solutions are visited with probability proportional to their modeled likelih<u>ood</u>

STB5p binding site

\square	1	2	3	4	5	6	7	8	9	10
A	4.9%	4.8%	6.7%	34.6%	4.9%	12.5%	1.9%	91.3%	17.3%	55.8%
C	87.4%	6.7%	1.0%	8.7%	25.2%	6.7%	1.9%	1.0%	8.7%	6.7%
G	1.0%	86.5%	90.4%	9.6%	66.0%	2.9%	3.9%	1.0%	4.8%	17.3%
Т	6.8%	1.9%	1.9%	47.1%	3.9%	77.9%	92.2%	6.8%	69.2%	20.2%

6/19/2007

OrthoGibbs: Centroid

Intuitive idea ...

1234567890	 1234567890	
GCCCGGTGCTATTACG	 GCACGGAGTTATGCGA	S. cerevisiae
GTCGGTGCTATCACG	 TCGCGGAGGTATAGGA	S. paradoxus
GCCTGTGTTATTCG	 GCGCGGTGTTATACGA	S. mikatae
ACCGGTGTTATTACA	 GCGCGGAGTTATAAAG	S. kudriavzevii
GA <mark>CGGTGTTATG</mark> GCA	 ACGCGGAGGTATGCGG	S. bayanus

- Report all those binding sites that appear in at least half the algorithm iterations
 Details & Subtleties:
- Sites need not appear together in the same iteration
- Sites need not correspond to identical motif models
- Burn-in iterations
- Sufficient overlaps
- Exclusivity of nearby sites 6/19/2007
 Lee Newberg

PhyloScan

For finding (additional) binding sites that match a known pattern

- Multisequence alignments helpful
- Phylogenetic tree required for each clade
- Multiple instances within a sequence is helpful

E. coli Crp motif from Carmack, McCue, Newberg, & Lawrence, *Algorithms Mol Biol*, 2007

 Prior work: MONKEY by Moses, Chiang, Pollard, Iyer, & Eisen, Genome Biol, 2004

PhyloScan:

Asking how promising is ...

- 1. a binding site possibility in an multisequence-alignment intergenic region
- 2. the best site in such an intergenic region given the length of the region. Likewise for 2nd best, ...
- 3. an intergenic region, as indicated by its best sites. If good enough...
- 4. an intergenic region, with additional evidence from the orthologous regions in other clades
- 5. a set of orthologous intergenic regions, given the number of sets examined

The nitty gritty:

- 1. Compute exact p-value. Phylogenetic adaptation of Staden, *Comput Appl Biosci*, 1998
- 2. Compute p-value given a site's order statistic
 - 2. Combine computed p-values of best sites in an intergenic region

Neuwald & Green, *J Mol Biol*, 1994 If good enough...

- 4. Combine across clades Bailey & Gribskov, *J Comput Biol*, 1998
 - Convert to q-values. Storey, *J Royal Stat Soc B*, 2002

6/19/2007

PhyloScan: Tuning Parameters

Specify weights for 1st = 0.9 2nd = 0.1 2nd = 0.1
 Designate threshold to prevent "rescue" of dubious intergenic regions
 Designate report threshold q ≤ 0.001

PhyloScan: Improved Sensitivity & Specificity! Simulations & Results Kessults

	CI	C2	C3	C4	C5	C6
E. coli Sequence Data	Fulla	Fulla	Red. ^b	Red. ^b	Red. & Aligned ^c	Red. & Aligned
Indep. Species	No	Yes	No	Yes	No	Yes
Crp Known ^d	1(2)	7(10)	1(2)	8(12)	4(6)	11(16)
Crp Novel ^d	0(0)	16(20)	0(0)	16(18)	6(7)	18(21)
PurR Known ^d	1(1)	9(9)	1(1)	11(11)	9(9)	12(12)
PurR Novel ^d	0(0)	4(5)	0(0)	4(5)	3(4)	6(7)

6/19/2007

Lee Newberg

PurR motif

21

Conclusions

 We reduced omissions and false discoveries as a fraction of actual sites

- OrthoGibbs for *de novo* detection Newberg, Thompson, Conlan, Smith, McCue, Lawrence, *Bioinformatics*, 2007
- PhyloScan for additional sites
 Carmack, McCue, Newberg, &
 Lawrence, Algorithms Mol Biol, 2007

6/19/2007