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Simulated sequence data

Data sets:
• 100 sets of simulated sequences were generated from a phylogenetic tree (γ-
proteobacterial or yeast).
• 0 to 4 simulated sites were planted in the simulated sequences:  Crp sites for γ-
proteobacterial and STB5p sites for yeast.
• Four different algorithms were tested:
 − Gibbs Recursive Sampler (provides MAP solution)
 − Gibbs Recursive Sampler with phylogeny incorporated (MAP solution)
 − Gibbs Centroid Sampler with phylogeny incorporated
 − PhyloGibbs, Siddharthan et al. (2005).

Results:
Specificity -  The number of false positives (FP) predicted in a sequence with no 
planted motif sites.

Positive Predictive Value (PPV) -  of the predictions made, what proportion are 
true positives (TP):
 
Sensitivity -  of all the positive sites, what proportion are detected:

Conclusions
The combination of a centroid predictor and a full phylogeny model yeilds enhanced specificity, sensitivity and PPV to Gibbs sampling based motif detection algorithms:
• Specificity - in the absence of transcription factor bindings sites, the phylogenetic model enables the Gibbs sampler (MAP and centroid versions) to avoid false positive 
predictions.
• PPV - the phylogenetic Gibbs sampler centroid alignment is more resistant to false predictions and thus achieves higher PPV than the optimization-based approaches.
• Sensitivity - the ensemble centroid alignment has improved sensitivity over optimization-based algorithms, suggesting that optimization approaches focus on a subset 
of the true sites, and in so doing derive an overly-focused model.
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Motivation & Introduction
Advances in data collection technologies have generated increasingly large data sets 
available for analyses. While the emergence of such large data sets seems to imply more 
precise parameter estimation, paradoxically just the opposite is becoming common. This 
paradox arises because these technologies have created opportunities to draw inferences 
on previously unanswerable high dimensional questions. Optimization has been the 
workhorse of prediction and inference procedures in computational biology for virtually 
its entire history It has been the basis for the solution of  most of its most important 
problems, e.g. optimal alignments, minimum free energy structure (MFE)  prediction, 
and maximum a posteriori (MAP) motif finding. However, recently, the findings of 
Ding et al. (2005) and Newberg  et al. (2007) have led us to question this apparoach.  
We propose, instead, a predictor that is centered in the posterior weighted ensemble of 
solutions. We suggest as a representative solution one that has as many components as 
possible in common with the posterior weighted ensemble. Such an estimator minimizes 
the Hamming risk and is called the centroid. Statistical decision theory shows that opti-
mization based estimators minimize risk only under a zero/one loss function. This has 
little merit in discrete high-D spaces since the most likely solution rarely covers more 
than a minuscule fraction of the posterior space. 
The use of the centroid as a representative solution in computational biology is not new. 
It was introduced by Miyazawa (1994) as a reliable alignment method for sequence 
pairs. For RNA secondary structure prediction, Ding et al. (2005) show that MFE pre-
dictions produced 43% more prediction errors and have lower sensitivity than alterna-
tive centroid estimators. Here, we show that for motif detection, in both simulated and 
real data, the centroid estimator combined with a full phylogenetic model helps improve 
specificity, sensitivity, and positive predictive value compared to MAP based solutions. 

 
FPTP

TPPPV
+

=

 
FNTP

TPySensitivit
+

=

Centroid alignment solution
The Gibbs sampling procedure is initialized with a random alignment, the algorithm pro-
ceeds as follows:

1. a sequence is selected, and the probability of each possible number of sites, up to the 
maximum specified by the user, is calculated based on the current model; 
2. the number of sites is sampled; 
3. the predicted positions and types of the sites are sampled based on their  probabili-
ties, calculated as described by Thompson et al. (2004).
4. the motif models are updated from the sampled sites in all sequences.

•  The recursive sampler previously reported the MAP (maximum a posteriori probabil-
ity) alignment, the alignment with the maximimum log of the alignment probability 
minus the log of a background alignment.
• The above steps are executed during a “burn-in” period (typically 2,000-3,000 itera-
tions of steps 1-4), followed by a fixed number of sampling iterations (typically 8,000-
10,000) during which each sampled site is tracked.  
• The centroid is calculated from these samples by identifying the alignment that has the 
minimum total distance to the other alignments in the ensemble of sampled alignments. 
• Sites in two different samples have a distance of 1 if they do not overlap by half the site 
width.

A Phylogenetic Gibbs Sampler
• The Gibbs Sampler is based on the Gibbs Recursive Sampler (Thompson et al. 
2003).
• Sequences from closely related species are globally pre-aligned and their relationship 
described by a phylogenetic tree. See Fig. 1.
• Optimal sequence weights are generated from the phylogenetic tree (Newberg 2005).
• The joint probability of the aligned sequences at a given position is calculated using 
Felsenstein’s (1981) tree-likelihood algorithm. Motif sites of width w are modeled as 
product multinomials with Dirichlet priors.
• For the model-update step, a Metropolis-Hastings algorithm is used. Starting with an 
existing model, the algorithm first draws a proposed model using sequence-weighted 
counts from the posterior Dirichlet distribution. The proposed model is accepted with a 
probability based on a Metropolis-Hastings ratio:
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where:

Θ  is an existing model and Θp is a proposed next model
Fels(Θp)  is the result of the Felsenstein calculation for the 
motif or background sites
cb  is the sequence-weighted counts for each base
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Figure 1. Phylogenetic trees Figure 2. (A) PPV and (B) Sensitivity as a function of the number of planted simulated 
Crp sites in each simulated γ-proteobacterial sequence; (C) PPV and (D) Sensitivity as a 
function of the number of planted simulated STB5p sites in each simulated yeast sequence.

Algorithm

MAP

MAP+Phylogeny

Centroid+Phylogeny

PhyloGibbs

Proteobacterial

218.3

2.3

1.0

49.3

Yeast

n.d.

93.3

26.0

100.3

Table 1. Specificity of the algorithms reported as the number of false positive 
predictions in 100 simulated proteobacterial or yeast sequences containing no 
simulated transcription factor binding sites averaged over 3 runs. 

Table 2.  The phylogenetic Gibbs Centroid Sampler on proteobacterial promoter 
sequences
72 sets of orthologous promoters across eight γ-proteobacterial species with at least one 
experimentally validated transcription factor binding site is present in each of the E. coli 
sequences

Motif 
Models

1

2

3

Total
Predictions

57.7

74.3

79.3

True
Positives

47.3

57.3

61.3

False
Positives

10.3

17.0

18.0

False
Negatives

55.7

53.7

70.7

PPV

0.82

0.77

0.77

Sensitivity

0.46

0.45

0.46

Regulon

Crp

LexA

TyrR

Genes

25

8

5

TP

13.7

9.0

5.0

FP

6.0

0.0

0.0

FN

9.3

2.0

3.0

PPV

0.69

1.00

1.00

Sensitivity

0.47

0.82

0.62

TF sites

29

11

8

Total
Predictions

19.7

9.0

5.0

Table 3. The phylogenetic Gibbs Centroid Sampler on sets of co-regulated promoters
Orthologous promoters across eight γ-proteobacterial species grouped by regulon
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