
Integrating The World-Wide Web and Multi-User Domains to

Support Advanced Network-Based Learning Environments

Lee A. Newberg, Richard O. Rouse III, and John A. Kruper
Biological Sciences Division Office of Academic Computing

The University of Chicago
Chicago, Illinois, USA

E-Mail: L-Newberg@UChicago.EDU

October 21, 1994

The World-Wide Web consists of over five million documents distributed throughout
the world and organized by a web of hypertext links connecting related topics. Object-
Oriented Multi-User Domains are text- and network-based applications that allow in-
dividuals to converse in real time with each other and to interact with user-defined
simulation objects. As part of our efforts to develop advanced network-based learning
tools, we describe how we have integrated these two highly powerful and popular Inter-
net applications. Our integration merges the strengths of the World-Wide Web (font
styles, images, hypermedia, and hypertext), with the strengths of Multi-User Domains
(interactivity and easy construction of software controlled objects).

1 Introduction

1.1 The World-Wide Web

The World-Wide Web consists of over five million documents and a vast collection of database information
distributed throughout the world and organized by a web of hypertext links connecting related topics.
Reflecting the popularity and growth of this distributed information system, Web-based information is
doubling every six months to a year. Much of the power of the Web is derived from its seamlessness and
ease of use. By clicking the mouse a user can fetch a page of information from any computer worldwide
without knowing anything about how a given page is located, generated, or retrieved. The Web is free and
is accessible to anyone equipped with Web-client software such as Phoenix, Mosaic, Netscape, or MacWeb.

1.2 Multi-User Domains

Object-Oriented Multi-User Domain (MOO) software and related variations are network-based applications
initially developed for role-playing games in which players interact with each other and a computer-created
fantasy environment complete with a variety of simulated objects and characters. Originally named MUDs
for Multi-User Dungeons, these virtual worlds blur the notion of identity, allowing human users to adopt
alter-egos, move around, explore, and emote with real and virtual creatures, and play out rich role-playing
scenarios and simulations.
More recently, MUDs and MOOs have been used to support distributed scientific or political commu-

nities and to function as adjuncts or even replacements to town hall meetings and scientific conferences
and seminars. One example of a MOO used for academic purposes is BioMOO, administrated out of the
Weizmann Institute in Israel. Users connect to BioMOO to meet, speak, and collaborate with colleagues
distributed world-wide. Using the simulation and object-oriented features of MOOs, users can show and
share data and even conduct virtual experiments. BioMOO has a number of different subject-specific
rooms, including the Library, the Lounge, the Lab Wing, the Seminar Room, and the Mouse Colony room.
Illustrating the variety of activities supported in these environments, users can in the Mouse Colony
room anesthetize, dissect, and examine virtual mice, all the while speaking to and interacting with other
scientists located in the room.
Any MOO is readily accessible to anyone with MOO-client software such as tkMOO, Telnet, or Phoenix.

1



1.3 Network-based Learning Environments

The development of global computer networks and the availability for students at all levels to access
these networks provides new opportunities to create what educational researchers call a “community of
practice” — a distributed collection of individuals collaborating and collectively working toward a shared
set of goals. Network-based learning environments provide the computer-based tools to establish and
support such communities.
Though still in their infancy, some notable Network-based learning projects exist. Efforts such as

the Technical Education Research Center’s (TERC) LabNET project, Northwestern University’s CoVIS
project, and the University of Kansas’ Explorer Project all have made significant steps to bring the benefits
of network-based knowledge to the individual or classroom-based computer.
Though these efforts demonstrate the potential of network-based learning, significant drawbacks still

exist. For example, some projects require highly proprietary or platform-specific hardware and software,
limiting access to the lucky few schools, teachers, and students that can afford the expensive compo-
nents. Other projects utilize software that offers only minimal interactivity, or is difficult to use due to a
“command-line” interface.
We wished to directly address these limitations and to develop a next generation suite of tools that

could support and further advance network-based learning projects. Specifically, we set out to marry the
many strengths of the World-Wide Web to those of Multi-User Domains.
In a seamlessly integrated Web/MOO environment, information available via the Web also includes

the highly interactive information that originates in MOOs. The powerful configurability and interactivity
provided by MOOs is no longer restricted to text-only and is instead free to use the full hypertext and
hypermedia capabilities of the Web, including Web links, images, sounds, movies, fill-out forms, and of
course, plain text.
One simple example of how this environment can help build a community of practice is seen in on-line

discussion sessions. Here, users dispersed geographically can view a page displaying an ongoing problem-
solving discussion for a class. To participate in the discussion, users need only type what they wish to
say or ask, then hit the return key. Because the Web technologies are incorporated into the MOO, the
discussion section page can in addition contain graphs of data, digital videos, and links to additional
supporting information.
In another example, professors can use these environments to show slides to students in cyberspace

classrooms using a MOO slide-projector object. A MOO command such as “show next slide” would
send the slide image simultaneously to all students within the same room. The slide projector could also
be programmed to send accompanying text; Professors could also have the option of supplementing that
text with their own comments via the MOO say command.
An interactive graphical dissection program is yet another possibility. Content experts could design

a MOO object to react to various dissection commands from a student. The output of the MOO would
include the usual text but could also include graphics showing the results of the student’s actions. Through
the power of the Web, the student could send dissection commands by the click of a mouse. For instance,
the student might click on an image of a frog at the location she desires to start the next cut.

2 Goals & Considerations

We wish that the integration of the Web and MOO technologies be as seamless as possible in that any
protocol-independent mechanisms by which a user requests information from normal Web-server software
must also function when that server is a MOO. Conversely, any presentation possibilities available to a reg-
ular Web page must also be available to those that are MOO generated. These design and implementation
goals are reflected in Phoenix, the WYSIWYG Web editor/browser we have developed.
We wish that Phoenix be able to communicate with any MOO (or related piece of software) and not

just those specifically designed to understand Phoenix. A primary feature of a Web browser is its ability
to access information on the Internet even though it is presented in many formats and retrieved via several
mechanisms. In keeping with this spirit we wish Phoenix to be able to handle all MOOs, not just a few.
To properly incorporate MOO technologies we must overcome the asynchronous communications and

statelessness that are an inherent feature of the Web. As currently implemented, a Web client makes a

2



connection to the computer acting as a Web server, makes a request for information, receives a reply, and
then breaks the connection. This communication is asynchronous in that the connection is broken and there
are no provisions for allowing subsequent communications that progress in real-time. The communication
is also stateless in that the Web server does not remember any information about the requesting client
or its configuration state once the connection is broken. The Web’s asynchrony and statelessness make
conversations difficult and must be overcome in a proper integration with MOO technologies.
Fill-out forms, available with many Web clients, currently provide the Web’s best approximation of a

synchronous conversation. A page may be generated based upon and as a response to an electronic form
or search request, filled-out by a user and submitted to a remote computer by the Web client. Although
this mechanism is highly useful as a tool for getting information from the user to tailor a response, it does
not provide real interactivity. For instance, it still requires the user/client to initiate every transaction.
There is no way for the remote computer to initiate a transfer of information, as would be necessary in
the case when another person within the same cyberspace classroom “speaks.” In a forms-based approach
to communication, a user would not be able to hear what other people said in response to his last remark
until after his next remark.
The Web’s statelessness must be overcome as well. Currently, unless sophisticated software for page

generation is used to keep state (i.e., accounting information), a remote computer cannot “remember”
previous requests from the user and is unable to adjust its responses accordingly. To take full advantage
of our cyberspace classroom and its learning aids, the system must be able to remember and build upon
the past.

3 Implementation

We designed the Web/MOO integration with the above goals and considerations in mind. The primary
decisions involved:

• Uniform Resource Locators describing access to MOO-server information from Web clients;

• a protocol for communications between Web clients and MOO servers; and

• the presentation of the communications in Phoenix.

3.1 Uniform Resource Locators

In the Web, each Web page can be located by a uniform resource locator (URL). Generally, a URL specifies
the computer from which to fetch a page, the network port to contact, the filename containing the page,
and the name of the transfer protocol to be employed in requesting the page. (Not all of these fields
are present for each protocol and some protocols have additional fields.) We are establishing a Domain
Server Transfer Protocol (dstp) for URLs. It describes to Web clients where and how to fetch a piece of
information from a MOO server.
It should be noted that as a typical user, one would not need to know the URL of the requested page.

This technical information is stored and managed by the Web client and is invisibly accessed when the
user clicks on a hypertext link. The URL template for access to a MOO is given by

dstp://computer:port/prompt(/connection)*[#command(:command)*]

where

• “(. . . )*” means zero or more occurrences of the contained string.

• “[. . . ]” means zero or one occurrences of the contained string.

• computer is the computer running the MOO server.

• port is the network port on computer at which the MOO server is expecting requests.

• prompt is a string of the last few characters the MOO server sends when it is ready to receive
a command. When the initial connection to the MOO server is being established, any following
connection pair(s) are used instead.

3



• Each connection is a connectprompt=connectresponse pair used to establish a connection to the MOO
server if no such connection yet exists. They are used in the order given. connectprompt is a
string of the last few characters the MOO server sends when it is ready for the Web client to send
connectresponse. If connectresponse is empty, the user is prompted for the value. If in the second or
following connection, the connectprompt is empty then the connectresponse (or, if empty, the value
supplied by the user) is sent immediately after the previous connectresponse.

For instance, a connection of /login%3A%20=/Password%3A%20= where %3A%20 is the URL encoding
for a colon followed by a space requests a login name and password following the prompts “login: ”
and “Password: ”, respectively. A connection of /Hello%3A%20=login%20/=/=%20/= would send
“login ” followed by a login name, a space, and a password after the prompt “Hello: ”.

• A command is something users can type to the MOO server after logging in. These are to be sent
to the MOO server, in order, once a connection has been established. One command followed by
a line terminator is sent after each occurrence of prompt until they are exhausted. For example a
command might move a user to a particular classroom; create, find, or destroy an object; or start
a MOO-object slide projector. Generally, the MOO server will give feedback to the user for each
command, even for those commands that “fail” (e.g., a user who wishes to start a slide projector, but
cannot because one is not in the room). With the feedback, the user has the option of responding
with subsequent actions.

Certain types of Web pages known as ISMAPs, ISINDEXes or FORMs cause strings to be appended
to URLs. In such cases, the appended string is appended to the last command. This changes the
actual command name unless the command ends with a space or other separator recognized by the
MOO server. This appending mechanism would enable user-customizable manipulations of a MOO.

This syntax was chosen because it describes where and how to access any information that a MOO
server might provide. The computer/port pair uniquely identifies the MOO server. The connection pairs
are sufficiently general to allow automated login to any MOO server encountered. The simplicity of the
command syntax allows any command to be submitted to the MOO server. Finally, information from the
user can be supplied to the MOO server by appending to the URL in any of the ways normally employed
to send information to Web servers.

3.2 Protocol

To ensure that Phoenix is able to communicate with existing MOO servers, we have to keep the protocol
simple. We use Telnet, the software used for remote logins. Note that the connection is not broken after
the initial response of the MOO server, but is held open until explicitly closed with a MOO command,
which may be a URL, or after a specified time-out period has expired. This means that at any given time,
Phoenix may have open connections to several MOOs. A drawback to using Telnet is that the automated
format negotiation mechanism of http is lost. However, this is unavoidable since we wish to support
existing MOOs that do not understand this mechanism.
Commands from the Web client are exactly the same as users (or the MOO client software) would

type to a MOO server. MOO servers wishing to present more than plain text would support commands
that allow users (or the Web client software) to specify presentation formats. For example, the command
“set MIME=True”, which typically would be specified in the connection part of a URL, would be a request
that the MOO server use MIME rather than plain text. In such cases, the response from the MOO is
interpreted according to the Multipurpose Internet Mail Extension (MIME) standard. A MOO server that
wishes to present hypertext using the HyperText Markup Language (HTML), for example, may issue a
“Content-type: text/html” line. If no content type is specified it is assumed that the MOO server is
sending plain text. Finally, the MOO server may switch among MIME types by proper use of the MIME
type multipart/mixed.
In addition to the above protocol considerations, the Web client should record communications from

each MOO server even if the client is not currently displaying the corresponding pages.
The choice of Telnet and MIME, two widely implemented standards, ensures easy migration of the

protocol to many hardware/operating-system platforms. The system that runs the MOO server may be

4



of any type and need not be the same as the one running Phoenix. This gives great flexibility in the use
of hardware and software and is in line with the easy extensibility that has made the Web so popular.

3.3 Presentation

In our implementation, the region of the Phoenix window that normally displays a viewed page is broken
into two parts. The upper part displays output from the MOO server. The lower part holds one line of
text and is where the user types commands to the MOO server directly. The upper section can scroll once
it becomes full.
A single page (with the two sections just described) is used for each MOO server. Clicking on a URL

to a MOO already opened returns the user to the existing page for that MOO and issues the commands
in the URL.

Figure 1. Web-Enhanced BioMOO Example

Information may be sent to the MOO server by clicking on a hypertext link in the upper window, by
typing, or by cutting and pasting into the lower window. In particular, users can send HTML (containing
formatted text, images, and hypertext links) to the MOO server. For example, with the MOO server’s say
command, a user can easily send images to the other classroom occupants. This would be accomplished
via the HTML <IMG> markup (which in addition requires the URL describing where to find the image to

5



be displayed). In Phoenix, this markup and corresponding URL is automatically and invisibly supplied
when the user copies an image from any Web page and pastes it into the lower window.
[Fig. 1] shows one way that the a MOO could take advantage of the capabilities provided by Phoenix.

The figure shows the Phoenix client connecting to a Web-enhanced BioMOO at the Weizmann Institute.
Through the use of the Web’s Hypertext Markup Language and Phoenix’s powerful hypermedia and

hypertext presentation formats, the BioMOO easily makes use of images, Web links, and many font styles
and sizes. Rather than a bland vt100-style output, the BioMOO now offers its welcoming banner as an
image. After the banner, the BioMOO displays user options in a nicely formatted list structure wherein
user-inputed text is distinguished from the accompanying BioMOO text by the former’s presentation in a
different font.
By varying fonts, the BioMOO easily lends intuition, letting a user know to type the text connect

literally but then to substitute in an actual userid and password where the keywords userid and password

appear. Additionally, the BioMOO provides an e-mail address in the easily-read, fixed-width courier font
so users will have no difficulty distinguishing similar-looking alphanumeric characters.
All text from the BioMOO is interlaced with the text typed in the upper window. The bottom window

is used to compose messages to send to the BioMOO server. This separate window allows users to enter
commands uninterrupted by the continuing flow of the events that occur in the upper window. When a
user hits the return key, the text is appended to the upper window and is sent to the BioMOO.

4 Conclusion

We believe that incorporating the advantages of Web technologies with those of MOOs hold great potential
to improve network-based learning environments. Striving for simplicity, extensibility, and ease of use, we
have integrated the Web and MOO applications in our Web browser/editor, Phoenix. In addition to further
enhancing our Phoenix client, we are currently designing MOO/Web servers that take advantage of these
newfound capabilities.
Further information about Phoenix, the Web, MOOs, and other technologies discussed in this article

can be found using the Web, accessing the sources listed below.

References

[Berners-Lee, 1995] Berners-Lee, T. (1995). The World Wide Web. CERN,
[http://info.cern.ch/hypertext/WWW/TheProject.html].

[Borenstein & Freed, 1992] Borenstein, N. & Freed, N. (1992). MIME (Multipurpose Internet Mail Extensions):
Mechanisms for Specifying and Describing the Format of Internet Message Bodies.
[http://info.cern.ch/hypertext/WWW/Protocols/rfc1341/0 Abstract.html].

[Braverman, 1994] Braverman, A. M. (1994). Technical Information and Specifications. NCSA,
[http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Docs/d2-tech.html].

[Connolly, 1995] Connolly, D. W. (1995). HTML Specification Review Materials. HaL Computer Systems, Inc.,
[http://www.hal.com/users/connolly/html-spec/].

[Glusman, 1995] Glusman, G. (1995). BioMOO, the biologists’ virtual meeting place. Weizmann Institute,
[http://bioinformatics.weizmann.ac.il:70/1s/biomoo].

[Murray-Rust, 1994] Murray-Rust, P. (1994). MOOs and MUDs, especially BioMOO.
[http://seqnet.dl.ac.uk:8000/vsns-pps/technology/biomoo.html].

[NCSA, 1994] NCSA (1994). A Beginner’s Guide to URLs.
[http://www.ncsa.uiuc.edu/demoweb/url-primer.html].

[NCSA, 1995] NCSA (1995). A Beginner’s Guide to HTML.
[http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html].

[Newberg, 1995] Newberg, L. A. (1995). Announcing Phoenix: A Genuinely WYSIWYG HTML Editor. The
University of Chicago, Biological Sciences Division, Office of Academic Computing,
[http://http.bsd.uchicago.edu/∼l-newberg/phoenix.html].

[Reilly, 1994] Reilly, C. (1994). MOO-WWW. Trinity College Dublin,
[http://www.maths.tcd.ie/pub/mud/moo-www/directory.html].

6


