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Abstract

Finding, Evaluating, and Counting DNA Physical Maps

by

Lee Aaron Newberg

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Richard M. Karp, Chair

The International Human Genome Project seeks to analyze the DNA which
can be found inside of every cell of every one of us. The goal is to map and sequence
the DNA so that the location and chemical encoding of every inheritable trait is
known. This dissertation includes several algorithms for finding and evaluating DNA
clone orderings and probed partial digest maps as well as combinatorial results about
them.

Using an extension of a statistical model given by E. Lander and M. Wa-
terman to define the likelihood of a clone ordering conditioned upon hybridization
data we give algorithms for computing the likelihood of a map and for finding a
map of maximum likelihood. The dynamic programming algorithm for computing
likelihoods runs in time O(ms) where m is the number of oligonucleotide probes,
and s is the size of the placement. The probability for each probe is computed via
O(s) conditional probabilities. We use the Expectation-Maximization technique to
maximize likelihoods.

Using Occam’s Razor to define the quality of clone orderings conditioned
upon hybridization data we give algorithms for computing the simplicity of a map
and for finding a map of maximum simplicity. We give an efficient algorithm that
finds and evaluates the maximum interleaving, a best interleaving compatible with
a given permutation of clones. We apply heuristics from the Traveling Salesperson
Problem to search the space of permutations for a globally simplest interleaving.

Using a minimum-error heuristic to define the quality of a clone ordering
we give algorithms for computing the number of errors implied by a map and for
finding a map with a minimum number of errors. The algorithms perform well even
in the presence of many data errors.

The statistical, simplicity, and minimum-error algorithms are more powerful
than existing methods which restrict themselves to comparing clones in pairs. Our
algorithms allow that the data from other clones may affect one’s opinion about
whether two clones overlap and are able to produce better maps from less data.
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We give an efficient branch-and-bound algorithm for creating a clone or-
dering from the data of a probed partial digestion experiment. The algorithm works
well even when there are errors in the length measurements because, in part, of the
algorithm’s heavier reliance on the lengths of the shorter fragments which are mea-
sured more accurately in experiment. The algorithm will generate all solutions, in
descending order of quality, until terminated.

We derive the number of topologically-distinct solutions c(n) to the Clone
Ordering Problem for n clones. We show c(1) = 1, c(2) = 2, c(3) = 10, and, for
n > 3, that c(n) = (4n−5)c(n−1)− (4n−7)c(n−2)+(n−2)c(n−3). We show that

the exponential generating function C(x)
def
=
∑∞

n=0 c(n)
xn

n! = exp
(

1+2x−
√
1−4x

4

)

. We

show that c(n) ∼ e3/8
√
2

8n

(

4n
e

)n
.

We derive a bound on the number of possible solutions to the Probed Partial
Digest Mapping Problem. We show that a multiset of N lengths, measured without
error, can have as many as Ω(N t) solutions for any t < ζ−1(2) where ζ(t) is the
Riemann Zeta Function and ζ−1(2) ≈ 1.73.

Richard M. Karp Date
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Chapter 1

Foundations

Deoxyribonucleic acid (DNA) is a long molecule in which our genetic
endowment is encoded. It determines what we inherit from our parents. The DNA
molecule may be regarded as two intertwined strands each consisting of a sequence
of nucleotides: adenine, thymine, cytosine, and guanine. These nucleotides are
represented by the letters {A, T,C,G} and a DNA strand can be thought of as a
string of these letters.

A single strand of DNA is chiral, meaning that it is distinguishable from
its mirror reflection. That is, a sequence of nucleotides is biologically different from
the reverse sequence of nucleotides. By convention, single-strand DNA sequences are
written from left to right in what is known as the 5′ to 3′ (five-prime to three-prime)
direction. The paired strands of double-stranded DNA run in opposite directions.
The nucleotides A and T are complements, as are C and G, and the sequences of
the paired strands are reverse complements. See Figure 1.1.

A nucleotide together with its complement on the other strand is called a
base pair. Human DNA molecules (chromosomes) are 107 to 108 base pairs long.
The collection of all 46 DNA molecules in the nucleus of a human cell is 3× 109 base

3′ ←− CAGAAATCTCAGTGAGTGAGAGTACATTCC←− 5′

5′ −→ GTCTTTAGAGTCACTCACTCTCATGTAAGG −→ 3′

Figure 1.1: Sequences Which Are Reverse Complements.
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2 CHAPTER 1. FOUNDATIONS

pairs long and is known as the human genome.

Dispersed throughout the human genome, accounting for but 10% of it, are
approximately 105 short substrings, typically 3000 to 5000 base pairs long, known as
genes. Genes are chemical encodings of information which determine our physical
traits. It is not known whether the remaining 90% of the genome contains useful
information. The fundamental goal in analyzing a genome is to locate and sequence
genes. There are many approaches and subgoals. Both [Wil91] and [Kar93] pro-
vide broad overviews of the subject; the latter from a theory of computer science
perspective. The biological technologies involved are described in [ABK+89].

1.1 Physical Maps

The process of gene location is achieved via physical maps. A physical
map could be compared to a map of a city. A city map gives the location of landmarks
(which might include museums, hospitals, highways, and streets) throughout the city
whereas a physical map gives the location ofmarkers (which come in many varieties)
distributed throughout the genome. Although these markers need not be genes
they are useful because they are easily detectable experimentally. Through various
experimental and statistical means the markers which are close to an unmapped
gene can be found. With a physical map showing the location of the markers the
approximate location of the gene can be determined immediately.

A restriction map is a physical map that shows the locations where the
genome is cut by a restriction enzyme. A restriction enzyme recognizes a sequence
of 5 to 10 base pairs and cuts the genome at occurrences of the sequence. These
locations are called cut sites or restriction sites. The process of cutting is known
as digestion and the result is known as a digest.

A clone ordering (also known as a contig map or cloned DNA map) is
a kind of physical map that provides the locations of short DNA fragments. Because
these fragments are produced by cloning (i.e., copying) they are known as clones. A
collection of clones is called a library. A clone is a copy of an interval of the DNA and
is typically 103 to 106 base pairs long. Because these clones are smaller than the long
DNA molecules it is easier to perform experiments on them. In particular, one can
more easily locate and sequence (i.e., find the string of base pairs encoding) a gene
once a fragment that contains it is known. A library of clones is built by first making
many copies of the original genome. These copies are then cut up into fragments in
different ways using a variety of restriction enzymes. Those fragments that are of
an easily-handled length are retained and cloned. Because the fragments come from
many copies of the original genome they need not represent disjoint substrings of it.
Those clones that are not disjoint are said to overlap. The total length of all the
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clones divided by the length of genome is called the coverage of the library and is
typically between 5 and 20. (See [CdJB+89, BSP+90, ABK+89] for more information
on the biological aspects of creating clones.)

The task of finding a clone ordering from analysis of the clones is called the
Clone Ordering Problem (or Contig Reconstruction Problem). Dependent
upon the amount of information available, a clone ordering for n clones may be
known at various levels of detail. A placement of clones is a precise specification
of the location on the DNA of each clone. When the length of each clone is known
a placement will be denoted by an n-dimensional vector ~x where the ith coordinate
xi is the location of the left endpoint of the clone labeled i. An interleaving of
clones is a specification of the linear order of the 2n clone endpoints on the DNA.
Each interleaving is an equivalence class of topologically equivalent placements. A
permutation of clones is a specification of the linear order of the n left endpoints
of the clones. Where the right endpoints fall within the linear order of the left
endpoints is not specified. Each permutation is an equivalence class of interleavings or
placements. Although knowledge of the correct placement would be ideal, knowledge
of the interleaving of a spanning set of clones is sufficient for many biological purposes.
Knowledge of the permutation is sufficient in many cases.

It will be convenient to define an atomic interval with respect to a place-
ment as a maximal interval of the form [x, y) which does not contain any clone
endpoint in its interior. If there are n clones, there will be 2n clone endpoints and
the DNA will decompose into 2n + 1 atomic intervals which are disjoint. A clone
is active in an atomic interval if it contains the atomic interval. The height of an
atomic interval is the number of clones that contain it. The size of a placement is
the sum of the heights of its atomic intervals. The maximum of the heights is the
height of the placement.

There may be some portions of the genome not covered by any of the
clones. These regions are called gaps. The remaining parts of the genome comprise
a collection of connected components known as islands. Those islands with more
than one clone are also called contigs.

For example, for three clones of length 1000 on a DNA fragment of length
5000, the placement ~x = (3904, 541, 1203) is shown in Figure 1.2. The clones’ right
endpoints are ~y = (4904, 1541, 2203). The interleaving implied by this placement is
x2 < x3 < y2 < y3 < x1 < y1. The permutation implied by this placement or this
interleaving is x2 < x3 < x1. The intervals [2023, 3904) and [541, 1203) are two of
the seven atomic intervals. The former is a gap and for the latter, only clone 2 is
active. Clones 2 and 3 form an island that is a contig. Clone 1 is an island.
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DNA

clone 1

x1 y1

clone 2

x2 y2

clone 3

x3 y3

Figure 1.2: A Placement of Clones

1.2 Fingerprinting and Hybridization

In the process of creating the clones, their original positions in the genome
are lost. The information is recovered by fingerprinting the clones. In the most gen-
eral sense, a fingerprint is a description of a clone’s features sufficient to distinguish
it from other clones. Clones can be fingerprinted via hybridization: An oligonu-
cleotide is a small single-stranded DNA molecule which hybridizes (i.e., attaches)
to its reverse complement wherever it occurs on a single strand of DNA. Typically
an oligonucleotide is 6 to 10 nucleotides long and hybridizes to many places on the
DNA. Clones are shorter than the full DNA so most of them will hybridize to an
oligonucleotide only once or not at all. If an oligonucleotide is labeled, radioactively
or fluorescently, it is called a probe and its hybridization to a clone becomes easily
detectable. Although it is possible to detect that there is at least one hybridization
it is much more difficult to determine the number of places that a probe hybridizes
to a clone.

A large scale hybridization experiment may involve n = thousands of clones
and m = hundreds of probes. (See [DSL+90, CNH+90, EL89, HSB89, DDL+92,
DDS+93] for biological descriptions of hybridization experiments.) For each clone,
the experiment tells us which probes hybridize to it. This information is an example
of a clone fingerprint. This collection of clone fingerprints is called the hybridization
data. Using this data the task is to build a clone ordering.

The task is analogous to the following problem. Suppose you take a very
long one-column newspaper article and make many copies of it. You then rip up
these copies in different ways producing fragments of the article. For each fragment
and for each of a list of keywords you are told whether or not the fragment contains
at least one occurrence of the keyword. From this data you must reconstruct the
positions of the fragments in the original article. Note that only the existence, but
not the number of occurrences, of each keyword is given. Furthermore, the order of
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the keywords occurring in a fragment is not given. Thus this task is different from
the Shortest Superstring Problem discussed in [BJL+94, Tur89].

A marking is a description of where the probes occur on the DNA. As
with a clone ordering, the amount of information available determines how precisely
the marking can be described. The most precise description gives the exact location
of each probe hybridization. Less precisely, a marking may indicate which atomic
intervals contain which probe sites. Even less precisely, a marking may only indicate
which clones hybridize to which probes.

Those points, atomic intervals, and clones which hybridize to a probe are
said to be marked by the probe. A proposed marking which is consistent with the
hybridization data is called valid.

1.3 Probed Partial Digests

Hybridization is not the only way to fingerprint a clone. The fingerprint
can be a restriction map of the clone. In this case, a restriction enzyme that cuts
frequently (i.e., in more places than the restriction enzymes used to create the clones)
is most useful. These fingerprints are useful because clones which overlap will have
restriction maps which overlap.

A probed partial digestion experiment will give data for constructing
a restriction map of a clone. Under certain experimental conditions a restriction
enzyme cuts at some but not all of the cut sites. This process is called partial
digestion. In an (unprobed) partial digestion experiment many copies of a clone
are partially digested at once. For each pair of cut sites a fragment is obtained
which is a copy of the DNA between those two cut sites. However, it is not known
which pair of cut sites produces which fragment. The approximate lengths of these
fragments are measured using a process called gel electrophoresis.

For a probed partial digestion experiment, a probe is chosen which
hybridizes to the uncut clone in a unique location. As with partial digestion exper-
iments, the copies of the clone are partially digested and a fragment is obtained for
each pair of cut sites. Using gel electrophoresis the length of each fragment that
hybridizes to the radioactively or fluorescently labeled probe is measured. That is,
the distance between cut sites is obtained for each pair that straddles the probe site.
As with unprobed partial digestion, it is not known which pair of cut sites produces
which measurement.
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1.4 Overview

This dissertation includes several algorithms and combinatorial arguments
about DNA physical maps. Part I gives algorithms for constructing clone orderings
from hybridization data. These algorithms use different quality measures to evaluate
proposed clone orderings. The measure which is best depends upon the circumstances
under which the data is collected so we include them all.

In Chapter 2 we use a plausible statistical model to define the likelihood
of a clone ordering conditioned upon the results of hybridization experiments. We
provide algorithms for computing the likelihood of a map and for finding a map of
maximum likelihood.

In Chapter 3 we use Occam’s Razor to define the quality of clone orderings
— a map is good if it is simple. That is, a map is good if little additional information
is needed to reconstruct the results of the hybridization experiment. We give an
efficient algorithm that finds and evaluates a best interleaving compatible with a
given permutation of clones. We apply heuristics from the Traveling Salesperson
Problem to search the space of all permutations for a globally best interleaving.

In Chapter 4 we evaluate clone orderings based upon a minimum-error
heuristic. In the presence of experimental error, there may be a difference between
that data predicted by a clone ordering and the actual hybridization data. Those
maps which predict the actual results with the minimum number of errors are con-
sidered best. We give an efficient algorithm that evaluates a permutation of clones.
As with Chapter 3 we can apply heuristics from the Traveling Salesperson Problem
to search the space of all permutations for one that is globally best.

The algorithms of Chapters 2, 3, and 4 are more powerful than existing
methods (see [CAT93, CNH+90, EL89]) which restrict themselves to comparing
clones in pairs. Our algorithms allow that the data from other clones may affect
one’s opinion about whether two clones overlap. Hence, our algorithms are able to
produce better maps from less data.

Part I ends with Chapter 5 in which we count the number of possible so-
lutions to the Clone Ordering Problem. We give a generating function, recurrence
relation, and asymptotic limit for the number of topologically-distinct interleavings.

Part II discusses the Probed Partial Digest Problem. In Chapter 6 we give
an efficient branch-and-bound algorithm for constructing a clone’s restriction map
from the data of a probed partial digest experiment. The algorithm produces one or
more candidate solutions, each of which designates the locations of the cut sites and
specifies the end points of each fragment.

In Chapter 7 we count the number of possible solutions to the Probed Partial
Digest Mapping Problem. We provide a lower bound to the number of solutions for
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worst-case experimental data.
We have two hopes for this dissertation. Firstly, we hope that it will provide

a broad overview and some in-depth examples for the computer science theorist
interested in computational biology. Secondly, we hope that the algorithms in the
following chapters will become generally accepted in biology laboratories and will
speed the progress of the Human Genome Project.
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Part I

Hybridization Mapping Problem

9





Chapter 2

A Statistical Approach

(This material will also appear as [New94b].)
In this chapter we give statistical algorithms for finding and evaluating clone

orderings based upon results from hybridization experiments of DNA fragments to
oligonucleotide probes. Because there may be more than one map that is consistent
with the data, we wish to find those maps which are best. In this chapter we describe
a plausible statistical model and define “best” to mean most likely according to this
model.

2.1 Model and Definitions

The statistical model we use is an extension of the one presented in [LW88].
The DNA is represented by the [0, N) interval of the real line. All lengths

can be scaled so N is arbitrary. Typically it is chosen so that the length of clone is
approximately 1. The fact that DNA can be cut only between nucleotides is ignored
and cuts are allowed at any real coordinate.

Each of n distinguishable clones is represented by a subinterval of known
length which, for technical reasons, contains its left endpoint but not its right end-
point. A priori, each clone may occur uniformly at random on the DNA. That is,
the left endpoint of a clone of length ` is equally likely to be anywhere in the inter-
val (0, N − `). The case that two or more clone endpoints coincide or that a clone
endpoint coincides with an endpoint of the DNA has probability zero and will not
be considered. The length may vary from clone to clone though we will write simply
` rather than `(c) when the clone is obvious. The library of all clones is denoted by
C.

Each of m distinguishable probes is represented by a finite set of points
on the DNA which represents the locations to which it hybridizes. A priori, these

11
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points are described by a Poisson process on the DNA. That is, the probability that
there is exactly one occurrence of a probe in an interval [x, x + dx) is λdx + o(dx)
independent of any occurrences in any set disjoint from [x, x+ dx). The probability
of two or more occurrences is o(dx). The rate λ is independent of the interval chosen.
It may vary from probe to probe though we will write simply λ instead of λ(p) when
the probe is obvious. The collection of all probes is denoted by P . For example,
see [Bev69, Ric88] for a description of Poisson processes.

The hybridization data is denoted by a function D. If the data is error-
free it describes which clones contain which probes. More precisely,

D(c, p) =

{

1 if c contains at least one occurrence of p
0 otherwise.

}

If errors in the data are possible, they will be described by a false-negative rate fn and
a false-positive rate fp. If a clone c contains a probe p then D(c, p) = 1 if and only if
there is no false-negative for this datum, i.e., with probability 1 − fn. If c does not
contain p then D(c, p) = 1 if and only if there is a false-positive for this datum, i.e.,
with probability fp. Otherwise, D(c, p) = 0. The error rates fn and fp are assumed
to be known in advance. They are allowed to be dependent on the clone-probe pair
in question though we will write simply fp and fn rather than fp(c, p) and fn(c, p).

In the above definitions, the probability distributions for all clones, all
probes, and all data errors are mutually independent.

A placement will be denoted by a vector ~x where the ith coordinate xi ∈
(0, N − `) is the location of the left endpoint of the clone labeled i. An interleaving
and a permutation are equivalence classes of placements as previously defined. The
collection of atomic intervals will be denoted by A. The length of an atomic interval
a ∈ A is denoted by `(a) or just ` if a is obvious. The height of the placement is
denoted by h and its size by s.

In its most precise form a marking is denoted by a function

χ(x, p) =

{

1 if probe p occurs at the point x
0 otherwise.

The set of all such markings is denoted by M . Any marking of points implicitly
implies a marking of the atomic intervals.

χ(a, p) =

{

1 if ∃x ∈ a such that χ(x, p) = 1
0 otherwise

The set of all markings of atomic intervals is denoted by MA. Any marking of points
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or of atomic intervals implicitly implies a marking of the clones:

χ(c, p) =

{

1 if ∃a ⊆ c such that χ(a, p) = 1
0 otherwise.

The set of all such markings is denoted by MC .
For a probe p, those points, atomic intervals, and clones for which χ = 1

are said to be marked by p. A marking χ of any type is called valid if for all c and
for all p, χ(c, p) = D(c, p) where D is the error-free data and χ(c, p) is the implied
marking of clones. A clone c is validly marked if for all p, χ(c, p) = D(c, p).

Real DNA is not random and contains highly repetitive subsequences and
thus both the assumption that the clones’ left endpoints are uniformly distributed
and the assumption that probe occurrences are Poisson are suspect. Fortunately,
many of the repeated sequences are known (e.g., ALU (see [JM91, JWM92])). If the
restriction enzymes and oligonucleotides are chosen so that the short sequences they
detect are not subsequences of ALU, etc. the assumptions are reasonable, though
still not entirely accurate.

2.2 Likelihood of a Placement

Our task is to find a likely clone ordering at the desired level of detail. For
instance, we may wish to find a placement ~x which is most likely. That is, we wish ~x
to maximize Pr[~x|D] the probability of the placement given the hybridization data.
Using Bayes’ Theorem we have

Pr[~x|D] =
Pr[D|~x] Pr[~x]

Pr[D]
.

Because of our data model, Pr[~x] is independent of ~x. Furthermore, although the a
priori likelihood of the hybridization data Pr[D] may be hard to calculate, it is also
a constant independent of ~x. Thus, a most likely placement also maximizes Pr[D|~x].

Because the probes are independent, the probability of the hybridization
data D is just the product over probes of the probability of that probe’s hybridization
data. Without loss of generality, in the rest of this section we assume that there is
only one probe. We describe a dynamic programming algorithm for computing the
likelihood of a single probe’s hybridization data D given a clone placement ~x.

We calculate the likelihood of D by way of the likelihood of a marking using
the formula

Pr[D|~x] =
∑

χ∈MA

Pr[D|χ, ~x] Pr[χ|~x]. (2.1)
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A priori, the probability that the probe is not contained in an atomic interval a ∈ A
of length ` is given by the formula e−λ` where λ is the known Poisson rate for p. The
probability that a contains one or more occurrences of p is 1 − e−λ`. Because the
probe is Poisson, the a priori probability of a marking χ is

Pr[χ|~x] =
∏

a∈A

{

1− e−λ` if χ(a, p) = 1
e−λ` if χ(a, p) = 0.

(2.2)

If there are no false negatives or positives, Pr[D|χ, ~x] is 1 if χ is valid and
is 0 otherwise. More generally, when false negatives and positives are possible, the
likelihood is

Pr[D|χ, ~x] =
∏

c∈C



















1− fn if D(c, p) = 1 and χ(c, p) = 1
fp if D(c, p) = 1 and χ(c, p) = 0
fn if D(c, p) = 0 and χ(c, p) = 1

1− fp if D(c, p) = 0 and χ(c, p) = 0.

(2.3)

Since there are 2n + 1 atomic intervals, for a single probe there are 22n+1

possible markings of atomic intervals. Thus, the direct calculation of Pr[D|~x] using
Equation (2.1) would be quite costly.

2.2.1 Definition of α(a), αl(a, c), and αr(a, c).

We will use a dynamic programming algorithm that calculates Pr[D|~x] by
scanning the DNA from left to right. The algorithm is in the spirit of those described
in [Rab89] for Hidden Markov Models.

The placement ~x implies a permutation of the clones which is based on the
order of their left endpoints. Without loss of generality, we will assume that the
clones have been relabeled so that they are called c1, . . . , cn from left to right. To
simplify matters we will introduce two dummy clones c0 and cn+1. They do not have
a precise location on the DNA and do not affect the definition of the atomic intervals
but, are considered to be respectively entirely to the left of and entirely to the right
of all other clones. Clone ci is said to begin before or begin to the left of clone cj if
i < j. The 2n+ 1 atomic intervals are labeled a0, . . . , a2n from left to right.

For an atomic interval a, let L(a) be the set of non-dummy clones that are
entirely to the left of a on the DNA; let A(a) be the set of those clones that are
active over a; and let R(a) be the set of non-dummy clones that are entirely to the
right of a. See Figure 2.1.

The sets L(a), A(a), and R(a) are disjoint and their union is C. If no clone
includes another (because, for instance, all clones are the same length) then the sets
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a

DNA

cal(x) = c3 −→

←− car(x) = c6

Figure 2.1: The Clones Left of, Active at, and Right of a. Clones are shown above
the portion of the DNA which they represent. Clones {c1, c2} are to the left of a;
clones {c3, c4, c5, c6} are active at a; and clones {c7, c8, c9} are to the right of a.

L(a), A(a), and R(a) will contain clones with consecutive indices. All indices in L(a)
will be less than all indices in A(a) which in turn will be less than all indices in R(a).

We calculate Pr[D|~x] by considering the DNA from left to right. We define
α(a) for every atomic interval a ∈ A in such a way that α(a0) = 1 and α(a2n) =
Pr[D|~x]. Each α(a) can be computed from the values for the preceding atomic
intervals. This gives an algorithm for calculating Pr[D|~x].

Let

α(a) = Pr[(
∧

c∈L(a)
D(c, p))|~x] (2.4)

=
∑

χ∈MA

Pr[(
∧

c∈L(a)
D(c, p))|χ, ~x] Pr[χ|~x].

It will be convenient to put markings into equivalence classes based on
which clones of A(a) they mark when the marks to the right of a point x ∈ a are
ignored. The above sum over all markings will be broken up into sums over these
classes. Because of the following lemma we know that, regardless of the choice of x,
there are |A(a)|+ 1 classes where |A(a)| is the height of a.

Lemma 2.1 Consider a single probe p. Let χ ∈ M be a marking, let a ∈ A be an
atomic interval, and let x ∈ a be a point in the atomic interval. Considering only
marks of χ to the left of x we have that there exists a clone c ∈ A(a)∪{c0} such that

• Each clone of A(a) with a left endpoint at or to the left of the left endpoint of
c is marked, and
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• Every other clone of A(a) is not marked.

The dummy clone c0 is introduced so that the set of clones applicable in
the first criterion can be empty.
Proof: We will show that when c′, c′′ ∈ A(a) with the left endpoint of c′ before the
left endpoint of c′′ then if c′′ marked, so is c′. Since both c′ and c′′ are active at x,
we have that c′′ ∩ [0, x) ⊆ c′ ∩ [0, x). Since c′′ is marked at or before x, c′ must also
be.

With this lemma in mind, for every a ∈ A and every clone c ∈ A(a) ∪ {c0}
we define αl(a, c) and αr(a, c). For a ∈ A and c ∈ A(a) ∪ {c0}, we define αl(a, c) to
be

αl(a, c) =
∑

some markings

Pr[(
∧

c′∈L(a)
D(c′, p))|χ, ~x] Pr[χ|~x] (2.5)

where the summation is over those markings in MA satisfying two criteria. When
only marks to the left of the left endpoint of a are considered:

• Each clone of A(a) with a left endpoint at or to the left of the left endpoint of
c is marked, and

• Every other clone of A(a) is not marked.

If the set of clones for either of these conditions is empty then the condition is auto-
matically satisfied. In the event that L(a) = ∅, the empty conjunction

∧

c′∈L(a)D(c′, p)
is defined to be true.

The function αr(a, c) is defined similarly except that marks which are to
the left of the right endpoint of a are considered.

From the lemma we know that, for a fixed a, every marking is included in
exactly one of the αl(a, c) and exactly one of the αr(a, c). It follows immediately
that α(a) =

∑

c∈A(a)∪{c0} αl(a, c) =
∑

c∈A(a)∪{c0} αr(a, c). Furthermore, αl(a0, c0) =
αr(a0, c0) = 1 and αl(a2n, c0) = αr(a2n, c0) = Pr[D|~x]. We will show how to compute
the αr(ai, ·) values from the αl(ai, ·) values and how to compute the αl(ai, ·) values
from the αr(ai−1, ·) values. This will give us the algorithm we desire.

2.2.2 Calculation of α(a), αl(a, c), and αr(a, c).

Let cal(a) be the clone in A(a) with the leftmost right endpoint (i.e., the
first clone to end) or, when A(a) = ∅, let cal(a) = cn+1. Let car(a) be the clone in
A(a) with the rightmost left endpoint (i.e., the last clone to begin) or, when A(a) = ∅,
let car(a) = c0. See Figure 2.1.

First we will show how to calculate αr(a, ·) from αl(a, ·): Marks which occur
in a may move a marking from one equivalence class to another. Any marking χ
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with χ(a, p) = 1 will contribute to αr(a, car(a)) regardless of the sum to which it
contributed in the calculation of the αl(a, ·)’s. On the other hand, if χ(a, p) = 0 then
the marking will contribute to αr(a, c) if and only if it contributed to αl(a, c). Since
the marks in a are independent of the marks before a, Equation (2.2) gives

αr(a, c) =

{

e−λ`αl(a, c) if c ∈ A(a) ∪ {c0}\{car(a)}
e−λ`αl(a, c) + (1− e−λ`)

∑

c′∈A(a)∪{c0} αl(a, c
′) if c = car(a)

where ` is the length of a.

The calculation of αl(ai, ·) from αr(ai−1, ·) breaks into two cases. If the
clone endpoint separating ai−1 from ai is the left end of a clone then L(ai) = L(ai−1)
and αl(ai, c) is identically equal to αr(ai−1, c) for all c in which the latter is defined.
The latter is not defined for c = car(ai) but in this case we have αl(ai, car(a)) = 0.

The harder case is that in which the endpoint separating ai−1 from ai is the
right end of a clone. In this case, L(ai) = L(ai−1)∪{cending} where cending = cal(ai−1)
is the clone that is ending. Because of this, we must incorporate a factor of

Pr[(
∧

c′∈L(ai)D(c′, p))|χ, ~x]
Pr[(

∧

c′∈L(ai−1)D(c′, p))|χ, ~x] = Pr[D(cending, p)|(
∧

c′∈L(ai−1)

D(c′, p)), χ, ~x]

= Pr[D(cending, p)|χ, ~x]

into the summand of Equation (2.5). Notice that the last equality follows from the
fact that, given a marking χ, the datum D(cending, p) is independent of the remaining
hybridization data.

For a given marking χ, either cending is marked or it is not marked. The
values αr(ai−1, c) for {c ∈ A(ai−1)∪{c0} : c begins before the left endpoint of cending}
are sums over markings that do not mark cending. As indicated by Equation (2.3),
for these sums

Pr[D(cending, p)|χ, ~x] =
{

fp if D(cending, p) = 1
1− fp if D(cending, p) = 0.

The remaining values of αr(ai−1, ·) are sums over markings that mark cending. For
these sums, Equation (2.3) indicates

Pr[D(cending, p)|χ, ~x] =
{

1− fn if D(cending, p) = 1
fn if D(cending, p) = 0.

In the special case where no clone includes another, the clones end in the same order
in which they begin. Only αr(ai−1, c0) is the sum of markings that do not mark
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cending. The remaining αr(ai−1, ·)’s are sums over markings that mark cending. Thus
in this situation, if D(cending, p) = 0 then

αl(ai, c) =

{

fnαr(ai−1, cending) + (1− fp)αr(ai−1, c0) for c = c0
fnαr(ai−1, c) for c ∈ A(ai)

and if D(cending, p) = 1 then

αl(ai, c) =

{

(1− fn)αr(ai−1, cending) + fpαr(ai−1, c0) for c = c0
(1− fn)αr(ai−1, c) for c ∈ A(ai).

More generally, when clones can include other clones,

αl(ai, c) =











Pr[D(cending, p)|χ(cending, p) = 0, ~x] · αr(ai−1, c0)
+Pr[D(cending, p)|χ(cending, p) = 1, ~x] · αr(ai−1, cending) for c = c0
Pr[D(cending, p)|χ contributes to αr(ai−1, c), ~x] · αr(ai−1, c) for c ∈ A(ai).

The formulae in this section can be combined into an algorithm that com-
putes Pr[D|~x] in time O(s) where s is the size of the placement ~x. The algorithm
computes αl(a, ·) and αr(a, ·) for every atomic interval a from left to right. An im-
plementation of the algorithm that assumes that no clone includes another is given
in Figure 2.2. Note that moving the memory allocation outside of this subroutine
will be more efficient if the algorithm is called more than once.

2.2.3 Most Likely Marking

For a given placement ~x and hybridization data D we may wish to find the
likelihood of a most likely marking, max{Pr[χ|D,~x] : χ ∈MA}. By Bayes’ theorem,

Pr[χ|D,~x] = Pr[D,χ|~x]
Pr[D|~x] .

We have just described how to compute the denominator of the right-hand side. The
maximum value of the numerator can be computed using a slight variation of that
algorithm.

In each formula where an αl or αr value is computed from others, wherever
addition of (possibly weighted) αl or αr values is indicated, a maximum function
should be used instead. For instance, e−λ`αl(a, c) + (1− e−λ`)

∑

c′∈A(a)∪{c0} αl(a, c
′)

should be replaced with

max
(

{e−λ`αl(a, c)} ∪ {(1− e−λ`)αl(a, c
′) : c′ ∈ A(a) ∪ {c0}}

)

.

By keeping track of which αl and αr values depend on which other values, the
markings which maximize the likelihood can be found efficiently. The details are left
to the reader.
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double probability(
int n, /∗ The number of clones ∗/
int N, /∗ The DNA length ∗/
double start[ ], /∗ The array of clone left endpoints, sorted ∗/
double len[ ], /∗ The array of clone lengths ∗/
int data[ ], /∗ The hybridization data for the clones ∗/
double rate, /∗ The Poisson rate of the probe ∗/
double fp, fn) /∗ The false−positive and false−negative rates ∗/

{
int first, last; /∗ Clones [first, last] are active ∗/
double position, newposition; /∗ The left and right atomic−interval endpoints ∗/
double length; /∗ The length of the atomic interval ∗/
double ∗alphal, ∗alphar; /∗ alphal[0..clone] and alphar[0..clone] for the implied atomic interval ∗/
int clone; /∗ The argument of alphal and alphar ∗/

alphal = malloc((clone + 1) ∗ sizeof(double)); /∗ Allocate memory ∗/
alphar = malloc((clone + 1) ∗ sizeof(double)); /∗ Allocate memory ∗/
start[0] = 0; start[n+1] = N; /∗ The dummy clones ∗/
len[0] = len[n+1] = 0;
first = 1; last = 0; /∗ The atomic interval a0 ∗/
position = start[0]; /∗ The left endpoint of a0 ∗/
clone = first − 1; /∗ The clone c0 will always be first − 1 ∗/
alphal[clone] = 1.0; /∗ The implied atomic interval is a0 ∗/

/∗ Repeat until the last clone ends ∗/
while (first != n + 1) {

/∗ Compute alphar for this atomic interval ∗/
newposition = min(start[first] + len[first], start[last + 1]);
length = newposition − position;
alphar[last] = alphal[last];
for (clone = first − 1; clone < last; clone++) {
alphar[clone] = alphal[clone] ∗ exp(−rate ∗ length);
alphar[last] += alphal[clone] ∗ (1 − exp(−rate ∗ length));}

/∗ Compute alphal for the next atomic interval ∗/
position = newposition;
if (start[first] + len[first] > start[last + 1]) { /∗ A clone is beginning ∗/

for (clone = first − 1; clone <= last; clone++) {
alphal[clone] = alphar[clone];}

alphal[last + 1] = 0;
last++;} /∗ update active clone range ∗/

else { /∗ A clone is ending ∗/
if (data[first] == 0) { /∗ The clone ending does not hybridize to the probe ∗/

for (clone = first; clone <= last; clone++) {
alphal[clone] = alphar[clone] ∗ fn;}

alphal[first] += alphar[first − 1] ∗ (1 − fp);}
else { /∗ The clone ending does hybridize to the probe ∗/

for (clone = first; clone <= last; clone++) {
alphal[clone] = alphar[clone] ∗ (1 − fn);}

alphal[first] += alphar[first − 1] ∗ fp;}
first++;}} /∗ update active clone range ∗/

free(alphal); free(alphar); /∗ Deallocate memory ∗/
return alphar[n]; /∗ The solution ∗/

}

Figure 2.2: Dynamic Programming Algorithm To Compute Pr[D|~x] When No
Clone Contains Another. The algorithm assumes that there is only one probe
and that the clones have already been sorted by their left endpoints.
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2.3 Most Likely Placement

We may find ourselves in a situation in which we know the interleaving I
of a collection of clones but not their exact placement ~x. The task is then to find a
placement compatible with the interleaving which, given the hybridization data D,
is most likely. That is, we wish to maximize Pr[~x|D, I]. Using Bayes’ Theorem we
have

Pr[~x|D, I] = Pr[D, I|~x] Pr[~x]
Pr[D, I]

.

Since, Pr[~x] and Pr[D, I] are independent of ~x it is sufficient to maximize Pr[D, I|~x].
Furthermore, Pr[D, I|~x] = Pr[D|~x] when ~x is compatible with I. Thus it is sufficient
to maximize

Pr[D|~x]

over all placements compatible with I. We will use the Expectation-Maximization
technique (EM). The theoretical basis of EM is described in [DLR77] and a well
written description of the technique can be found in [Rab89].

EM is not foreign to molecular biology. It is used in [LGA+87] to locate
markers on DNA. In that paper, the calculations are based on DNA recombinations
which are inferred from genealogy data. We will base our calculations on markings
which are inferred from hybridization data.

EM starts with a guess ~x for a most likely placement. In the general step,
the most recent guess is improved, yielding a placement with a higher likelihood.
A placement is improved in two steps: the Expectation step and the Maximization
step. In the Expectation step, the hybridization data D and the current guess for the
placement ~x are used to calculate statistics about the underlying marking which leads
to the experimental data — For every probe p and for every atomic interval a, the
expected number of occurrences, νap, of p in a is calculated. In the Maximization step,
the original data D is ignored. The statistics νap are assumed to represent the true
underlying marking and the placement ~x′ which maximizes Pr[νap|~x′] is calculated.
This maximization problem is easier than the original and, although we will not
prove it here, its solution ~x′ is guaranteed to have a likelihood Pr[D|~x′] ≥ Pr[D|~x].

The two steps are repeated in alternation until the likelihood ceases to in-
crease appreciably. Except in degenerate cases, EM converges geometrically (see [DLR77])
to a placement with a likelihood that is locally optimal. We conjecture that, acting
on real hybridization data, EM will converge to a placement which is globally optimal
among all those compatible with I.
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2.3.1 The Expectation Step

The Expectation step can be carried out on each probe individually. As
described below, three passes, each similar to the algorithm described in Section 2.2
are sufficient to calculate νap. In the first pass α(a) is calculated and stored for all
a ∈ A. The second pass is from right to left. It computes and stores β(a). The
function β(·) is the same as α(·) with all left’s and right’s flipped. That is, let

β(a) = Pr[(
∧

c′∈R(a)
D(c′, p))|~x] (2.6)

=
∑

χ∈MA

Pr[(
∧

c′∈R(a)
D(c′, p))|χ, ~x] Pr[χ|~x].

The third pass computes νap for each atomic interval. Let

ν(a, p) = |{x ∈ a : χ(x, p) = 1}|

be the number of marks in an atomic interval. We wish to calculate νap, the expected
number of occurrences of p in a given the placement ~x and the data D;

νap
def
= E[ν(a, p)|D,~x].

Because each probe obeys a Poisson distribution, if we do not condition upon the
data the expected number of occurrences of a probe in an atomic interval is just
the product of the probe’s rate λ and the atomic interval’s length `. Furthermore,
since χ(a, p) = 0 if and only if ν(a, p) = 0 we have that E[ν(a, p)|χ(a, p) = 1, ~x] =

λ`
Pr[χ(a,p)6=0|~x] .

Because ν(a, p) does not depend on D when χ(a, p) and ~x are given we have
that

νap = 0 · Pr[χ(a, p) = 0|D,~x]
+E[ν(a, p)|χ(a, p) = 1, D, ~x] Pr[χ(a, p) = 1|D,~x]

= 0 +
λ`

Pr[χ(a, p) 6= 0|~x]
Pr[χ(a, p) = 1|~x] Pr[D|χ(a, p) = 1, ~x]

Pr[D|~x]

=
λ`

Pr[D|~x] Pr[D|
χ(a, p) = 1, ~x]

We can factor Pr[D|χ(a, p) = 1, ~x] into three parts. The clones in L(a)
do not contain a nor any atomic interval to its right. Hence the data for these
clones depends only on marks to the left of a. Similarly, the data for the clones in
R(a) depends only on marks to the right of a. Furthermore, when χ(a, p) = 1, the
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data for the clones in A(a) is independent of any marks outside of a. Thus, using
Equations (2.4) and (2.6) we have

νap =
λ`

Pr[D|~x]α(a)β(a) Pr[(
∧

c∈A(a)
D(c, p))|χ(a, p) = 1, ~x]

=
λ`

Pr[D|~x]α(a)β(a)
∏

c∈A(a)

{

1− fn if D(c, p) = 1
fn if D(c, p) = 0

The third pass and hence the Expectation step, the entire calculation of the
νap’s, can be accomplished in O(s) time per probe.

2.3.2 The Maximization Step

We now use the νap values to derive a better placement. If all the ν(a, p)’s
were known for the underlying marking, it would not be hard to compute and max-
imize their joint probability Pr[ν|~x]. Since probes occur according to a Poisson
process, we have

Pr[ν|~x] =
∏

a∈A

∏

p∈P

(λ`)ν(a,p)

ν(a, p)!
e−λ`.

The EM technique requires that we use νap instead of ν(a, p) in this equation. If
there are no restrictions on the ` values, this is maximized when the placement gives
the values

`(a) =

∑

p∈P νap
∑

p∈P λ(p)
.

For atomic intervals a which are gaps, the new `(a) value will equal the old. This
reflects the fact that D contains no information for determining the length of atomic
intervals not contained by any clone.

The above solution may be infeasible under the restrictions that the lengths
of the atomic intervals contained in a clone must sum to the known length of the
clone, and that the sum of all the atomic intervals must sum to the DNA length
N . If it is important to adhere to these restrictions, the maximization should be
carried out using the method of LaGrange multipliers (see, for instance, [TF92]).
We maximize log(Pr[ν|~x]) modified by terms for the length restrictions. That is,
ignoring terms which do not depend on the `(a)’s, we maximize





∑

a∈A

∑

p∈P
[νap log(`(a))− λ(p)`(a)]



−
∑

c∈C
γc





∑

a⊆c

`(a)− `(c)


− γ
(

∑

a∈A
`(a)−N

)
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where {γ} ∪ {γc : c ∈ C} are the LaGrange multipliers. The solution is the set of
lengths and γ’s and satisfies the multilinear equations

∑

a∈A `(a) = N
For all c ∈ C,

∑

a⊆c `(a) = `(c)

For all a ∈ A, `(a) =

∑

p∈P
νap

∑

p∈P
λ(p)+

∑

c⊇a
γc+γ

.

Iteration of the Expectation and Maximization steps yields a sequence of
placements with likelihoods that converge geometrically to a local optimum.

2.4 Likelihood of an Interleaving

Rather than striving for the best placement we may wish to find the most
likely interleaving given the hybridization data D. Since Pr[I|D] = Pr[D,I]

Pr[D] and since

Pr[D] is a constant independent of I, it is sufficient to find an interleaving which
maximizes Pr[D, I]. In this section we discuss how to approximate Pr[D, I] for any
interleaving I. The calculation proceeds via the formula

Pr[D, I] =

∫

I
Pr[D|~x] Pr[~x]d~x (2.7)

where the integral is n-dimensional and is restricted to those placements compatible
with I.

Let ~x be a placement compatible with the interleaving I. Consider a change
of variables for the integral of Equation (2.7). Let

ξi =

{

xi if i = 1
xi − xi−1 otherwise.

The Jacobian (see [TF92]) of this change of variables is 1.

The atomic intervals a0 and a2n are gaps and there may be other atomic
intervals that are gaps. Let g be the sum of the lengths of the gaps. Every placement
~x′ derived from ~x by changing the lengths of the gaps (but leaving their sum equal
to g) and leaving the lengths of the atomic intervals within the islands unmodified
satisfies Pr[D|~x′] = Pr[D|~x]. Thus, we can easily integrate over the ξi which include
gaps. Let k be the number of islands. The integral is similar to that of the integral
over a k-dimensional simplex and provides a multiplicative factor of

gk

k!
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(By some definitions, two interleavings are considered equivalent if they are identical
except that their islands may be permuted. In such a case, the factor should be gk. If
additionally, the interleaving obtained by flipping one or more contigs is considered
equivalent then the factor should be gk2k

′
where k′ is the number of contigs.)

We will use ~ξ to represent the those ξ′is which do not include a gap. We
approximate the integral over these remaining n − k dimensions by assuming that
Pr[D|~ξ] approximates an (n − k)-dimensional Gaussian near its maximum and is
negligible elsewhere. Putting aside the actual hybridization data for a moment,
consider the probability distribution over all possible sets of hybridization data for
m probes, {Dm}, where each of theDm’s is weighted by its probability of arising from
the true underlying placement. We will argue that, with probability approaching 1 as
m→∞, a randomly chosen Dm will have the property that Pr[Dm|~ξ] approximates
a Gaussian near its maximum and is negligible elsewhere. (This will not be true
for some cases for the underlying true placement. However, these cases arise with
probability 0 according to our model.) We will thus conclude that in most cases
Pr[D|~ξ] has the same property.

The argument that Pr[Dm|~ξ] is likely to be similar to a Gaussian relies
on the independence of the probes. One can prove that when flipping an unbiased
coin m times, with probability 1, the number of heads observed deviates from the
expected number by o(m). For a fixed ~ξ one can argue similarly for log Pr[Dm|~ξ]
which is the sum of log-probabilities for m probes. With probability 1,

log Pr[Dm|~ξ] = E[log Pr[Dm|~ξ]] + o(m)

= m · E[log Pr[D1|~ξ]] + o(m) (2.8)

where the expectations are taken over the probability distribution on the Dm’s. Now,
E[log Pr[D1|~ξ]] is maximized by a placement which we will call ~xM . Except in some
cases for the underlying true placement which arise with probability 0 (no proof)
this placement is unique up to a reapportionment of lengths among the gaps. Near
~xM , E[log Pr[Dm|~ξ]] is a downward facing paraboloid (i.e., its first derivatives are
zero and the matrix of its pure and mixed second derivatives is negative definite.)
The second derivatives are proportional to m and hence grow without bound as m
goes to infinity. Because this growth is faster than the o(m) from Equation (2.8) we
conclude that the shape of Pr[Dm|~ξ] converges to a Gaussian near ~xM as m → ∞.
For a point ~x not near ~xM the difference

E[log Pr[Dm|~xM ]]− E[log Pr[Dm|~x]]

grows proportionally to m. For m large we conclude that Pr[Dm|~x] is negligible.
Armed with our Gaussian approximation, we can proceed. We redefine ~xM

to be a placement which maximizes Pr[D|~x]). If Pr[D|~xM ] and the O([n−k]2) mixed
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and pure second derivatives of log Pr[D|~ξ] at ~xM are known the volume under the
approximating Gaussian can be computed exactly. We can find ~xM and Pr[D|~xM ]
using the EM algorithm from Section 2.3.

The second-derivatives can be approximated to any desired degree of accu-
racy using differences. Let S be the (n − k) × (n − k) matrix of second-derivatives
where the (i, j) entry of S is given by

Sij =
∂2 log Pr[D|~ξ]

∂ξi∂ξj

∣

∣

∣

∣

∣

~xM

Let ~ei be the vector which has a one in the ith position and zeros elsewhere. Using
O([n−k]2) iterations of the Pr[D|~x] algorithm we can approximate S. For sufficiently
small ∆ξ we approximate

(∆ξ)2Sij ≈ log Pr[D|~ξ +∆ξ~ei +∆ξ~ej ]− log Pr[D|~ξ +∆ξ~ej ]

− log Pr[D|~ξ +∆ξ~ei] + log Pr[D|~ξ]

If all the mixed second-derivatives were zero, the volume under the Gaussian would
be

Pr[D|~xM ]
∏

c∈C(N − `(c))

(

(2π)n−k

det(−S)

)1/2

. (2.9)

Because S is a symmetric matrix there exists an orthogonal matrix R such that RSRT

is diagonal. The diagonal matrix has the same determinate as S. Furthermore, the
Jacobian of the change of variables defined by R is det(R) = 1. Thus Equation (2.9)
gives the volume under the Gaussian even when the mixed second-derivatives are
nonzero. The likelihood of the interleaving is

(

gk

k!

)(

Pr[D|~xM ]
∏

c∈C(N − `(c))

)(

(2π)n−k

det(−S)

)1/2

.
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Chapter 3

Using Occam’s Razor

(This material will also appear as [AKNW95].)

In this chapter we give discrete algorithms for finding and evaluating clone
orderings based upon results from hybridization experiments of DNA fragments to
oligonucleotide probes. As we noted in Chapter 2 there may be more than one map
that is consistent with the data and we wish to find those maps which are best.
The statistical model of Chapter 2 may not be appropriate for a given situation and
in this chapter we discuss an alternate definition of “best” clone ordering. In this
chapter, we invoke Occam’s Razor; the simpler the solution, the better it is.

3.1 Algorithm

We restrict ourselves to the noiseless case, in which the data is free of
experimental error. Furthermore, we assume that all clones are of length one. We
wish to determine the best interleaving of clones.

3.1.1 Definition of fD(I)

We invoke the principle of Occam’s Razor and we will define fD(I) to be
a measure of the amount of additional information (beyond the knowledge of I)
necessary to reconstruct a marking of atomic intervals that implies the data D. An
interleaving which minimizes fD(I) is simplest and we will consider it best.

Consider a permutation of the clones. With respect to a particular probe p,
define a positive run as a maximal sequence of consecutive clones, all of which are
incident with probe p, and a negative run as a maximal sequence of consecutive
clones, none of which are incident with probe p.

27
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8
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5

6

7

Figure 3.1: Placement of Clones in a Negative Run. None of these clones contain
the probe p.

Fix an interleaving I. We shall express the event D as a conjunction of
nearly independent events associated with distinct runs. For any negative run (r, p),
the event GOOD(r, p) occurs if for every clone c ∈ r, probe p does not occur in
any atomic interval which is contained by c. For any positive run (r, p), the event
GOOD(r, p) occurs if, for every clone c in the run, probe p occurs in some atomic
interval which is contained by c but is not contained by any of the clones in the
neighboring negative runs. We have that D = ∩(r,p)GOOD(r, p).

We now introduce a simple approximation to the information content of
the event GOOD(r, p)|I. Define a negative elementary event as an event of the
form “clone c does not contain probe p” (i.e., D(c, p) = 0); such an event implies
χ(a, p) = 0 for every atomic interval a contained in c. For a negative run (r, p) define
c−(r, p) to be the minimum number of negative elementary events with respect to I
needed to imply GOOD(r, p). For instance, suppose that for a probe p, the sequence
of clones 5 – 9 is a negative run whose actual placement is as shown in Figure 3.1.
The union of clones 5, 7 and 9 contains all the other clones in the run, so the three
negative elementary events D(c5, p) = 0, D(c7, p) = 0, and D(c9, p) = 0 together
imply the event GOOD(5 – 9, p). On the other hand, no two clones in this particular
placement cover all of the clones in the run. Thus, in this case, c−(r, p) = 3.

Define a positive elementary event with respect to I as an event of the
form “atomic interval a contains probe p”; such an event implies D(c, p) = 1 for
every clone c containing atomic interval a. For a positive run (r, p) define c+(r, p) to
be the minimum number of positive elementary events with respect to I needed to
imply GOOD(r, p). For instance, let 4 – 8 be a positive run with respect to probe p,
and let its actual placement be as shown in Figure 3.2. Note that the dotted clones
3 and 9 must belong, respectively, to the preceding and succeeding negative runs



3.1. ALGORITHM 29

........... .

.

. . . . . . . . . . ..

.

a b c d e f g h

3

4

5

6

7

8

9

Figure 3.2: Placement of Clones in a Positive Run. The c+ value of this run is 2,
since it is sufficient for probe p to lie on b and g to imply GOOD(r, p).

and therefore probe p does not belong to these two clones. The two events “atomic
interval b is marked by p” and “atomic interval g is marked by p” (i.e., χ(b, p) = 1
and χ(g, p) = 1) are sufficient to mark all the clones in the run. On the other hand,
no single atomic interval of this particular interleaving can mark all the clones of the
run. Thus, in this case, c+(r, p) = 2.

We define fD(I) to be the weighted sum

fD(I) = φ
∑

c−(r, p) + θ
∑

c+(r, p)

where φ and θ are nonnegative, the first sum is over negative runs, and the second
sum is over positive runs. The function fD(I) is a measure of how much additional
information is needed to imply the data D. The lower its value, the simpler and
better the interleaving is.

Alternate Definition of fD(I)

The function fD(I) can also be viewed as a rough approximation to− log Pr[I|D]
(according to the statistical model of Chapter 2). Thus, the desire to maximize
Pr[I|D] also motivates the goal of minimizing fD(I). By Bayes’ Theorem,

Pr[I|D] =
Pr[D|I] Pr[I]

Pr[D]
.
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SinceD is fixed, maximizing Pr[I|D] is equivalent to maximizing Pr[D|I] Pr[I]. When
the number of clones is at all large Pr[D|I] varies much more among interleavings
than does Pr[I]. Thus, as an approximation, we neglect the a priori probability
of an interleaving and seek to maximize Pr[D|I] rather than Pr[I|D]. Because D =
∩(r,p) Pr[GOOD(r, p)] and because the events GOOD(r, p) are nearly independent we
approximate Pr[D|I] by ∏(r,p) Pr[GOOD(r, p)|I]. We seek to maximize this value.

Except when the coverage is very low, the length of a negative run is ap-
proximately equal to, but not more than c−(r, p). Even when the coverage is low,

the length is never less than d c−(r,p)2 e. Thus, we use c−(r, p) as an approximation to
the length of run (r, p), and estimate Pr[GOOD(r, p)|I], the conditional probability
that p does not occur in any clone of r, by e−λc−(r,p) where λ is the hybridization
rate.

For positive runs the situation is more involved. The event GOOD(r, p) is
a conjunction of some events each of which is a disjunction of positive elementary
events. For instance, again consider the positive run 4 – 8 in Figure 3.2. The event
GOOD for this run and probe p is represented by the boolean expression

GOOD(4 – 8, p) = (a+ b)(a+ b+ c)(b+ c+ d+ e)(e+ f + g)(g + h)

where a represents the elementary event “probe p is in atomic interval a” and sim-
ilarly for b, . . . , h. If we make the simplifying assumption that probabilities of the
positive elementary events are roughly equal, say to p+, then Pr[GOOD(r, p|I)] is a
polynomial in p+ which, for a given value of p+, can be computed efficiently via a
variation of the dynamic programming algorithm in Figure 2.2. The polynomial is
of the form

Θ(p
c+(r,p)
+ ) +O(p

c+(r,p)+1
+ ).

For p+ small, the value p
c+(r,p)
+ is a decent approximation to Pr[GOOD(r, p|I)]. If

p+ = exp(−θ) our approximation to Pr[D|I] is

exp[−(λ
∑

c−(r, p) + θ
∑

c+(r, p))],

where the first sum is over negative runs and the second sum is over positive runs.
To maximize Pr[D|I] we need to minimize the exponent φ

∑

c−(r, p) + θ
∑

c+(r, p).
However, this last quantity is our new friend fD(I).

3.1.2 Local Improvement Strategies

To approximate minI fD(I) we employ a local improvement strategy similar
to the ones commonly used for solving the Traveling Salesperson Problem. We asso-
ciate with every interleaving I a unique ordering π of the clones, given by the order
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of occurrence of the left-hand end points in the interleaving I; thus π(i) = j if clone
cj occupies the ith position in the left-to-right ordering of the clones. Interleaving
I is said to be compatible with the permutation π. In outline, the algorithm is as
follows.

1. Let c(π) = minI fD(I), where I ranges over the interleavings compatible with
π. We will show that c(π) can be computed efficiently;

2. Define a neighborhood structure on the set of permutations of {1, . . . , n}.
Such a structure may be described by a vertex-transitive graph G whose vertex
set is the set of permutations of {1, . . . , n}; adjacent vertices in this graph are
considered to be neighbors.

3. Choose an initial permutation π0 and construct a maximal path (π0, . . . , πt) in
G such that, for i = 0, . . . , t− 1, c(πi+1) < c(πi);

4. Return the interleaving I of minimum cost among interleavings compatible
with πt.

To implement the approach we provide efficient algorithms for computing
c(π) and for searching through the neighborhood of a given permutation to determine
whether a local improvement is possible.

3.1.3 Interleavings as Lattice Paths

Before describing the algorithms for computing fD(I) and c(π), we intro-
duce a representation of interleavings that will be used throughout the chapter. We
exploit the property that all clones have the same length and thus no clone properly
includes another.

Let Mn,n be an n× n array of cells. Define a lattice path as a path from
the (1, 1)-cell to the (n, n)-cell in which each edge passes from a cell to either its
right neighbor or its lower neighbor, and every cell in the path is of the form (i, j)
where j ≥ i − 1; i.e., the path never ventures more than one diagonal below the
main diagonal. There is a natural one-to-one correspondence between lattice paths
and the interleavings compatible with permutation π. Each cell visited by a lattice
path corresponds to an atomic interval. Cells below the main diagonal correspond to
gaps. A cell (i, j) on or above the main diagonal corresponds to an interval in which
clones cπ(i), cπ(i+1), . . . , cπ(j) are active but no other clones are. For j = 2, . . . , n, a
move to the right in which the path enters column j corresponds to the beginning
of clone cπ(j); for i = 1, . . . , n− 1, a downward move in which the path leaves row i
corresponds to the end of clone cπ(i). Note that no cell of a lattice path is strictly
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up and to the right from another; i.e., a lattice path cannot include cells (i, j) and
(i′, j′) such that i′ < i and j′ > j.

The data D establishes that certain of the interleavings compatible with
π are impossible. Suppose there is a probe p that occurs neither on clone cπ(i) nor
on clone cπ(j) but does occur on some clone cπ(k), where i < k < j. Then cπ(i)
and cπ(j) cannot overlap in any feasible interleaving compatible with π; for, if they
did, their union would cover cπ(k), and one of them would have to contain p. Thus
we can exclude all lattice paths that pass strictly up and to the right from the cell
(i + 1, j − 1), since every such cell implies that cπ(i) overlaps cπ(j). Such a cell will
be called an excluded cell.

Theorem 3.1 A lattice path corresponds to an interleaving consistent with the data
D if and only if it does not pass through any excluded cells.

Proof: We have already described why a lattice path cannot pass through any
excluded cell. We must show that a lattice path that does not pass through any
excluded cell is consistent with the data D. That is, we must show that there exists
a valid marking for the interleaving corresponding to the lattice path.

Assume without loss of generality that the clones are numbered so that
π(i) = i. Take any instance where D(ci, p) = 1 and consider a cell (k, l) on the lattice
path such that k ≤ i ≤ l. If clones ck, . . . , cl all hybridize to p then it is consistent
with D to hypothesize that p hybridizes to the atomic interval corresponding to the
cell (k, l).

On the other hand, suppose that there is some clone in the atomic interval
which does not contain probe p. Because (k, l) was not excluded, all the clones
containing this atomic interval which do not contain p must be either to the right or
left of clone ci. Assume without loss of generality that they are to the left of clone ci
and let clone ck′ be the leftmost clone containing this atomic interval that hybridizes
to p. The first cell of the lattice path in row k′ corresponds to an atomic interval in
which all the clones contain probe p. Furthermore, ci is active over this interval. We
hypothesize that p hybridizes to this atomic interval.

By placing the probes in atomic intervals found this way, an occurrence of
probe p is placed in an atomic interval contained by clone ci if and only ifD(ci, p) = 1.

3.1.4 The Maximum Interleaving

Define the maximum interleaving compatible with π as the interleav-
ing in which clones cπ(i) and cπ(j) intersect if and only if their intersection is not
excluded. That is, they overlap if and only if there is no positive run r whose set
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for i = 1 to n+ 1 do
p1← head(probe list [cπ(i−1)])
p2← head(probe list [cπ(i)])

while ((p1 6= dummy probe) or (p2 6= dummy probe)) do
if (p2 < p1) /* A new positive run has begun */

probe run[p2]← i /* The start of the run */
p2← next(probe list [cπ(i)])

else if (p1 < p2) /* A positive run has ended */
add (probe run[p1], i− 1) to positive run list
p1← next(probe list [cπ(i−1)])

else /* In the middle of a positive run */
p1← next(probe list [cπ(i−1)])
p2← next(probe list [cπ(i)])

endif
endwhile

endfor

Figure 3.3: An Algorithm to Compute Positive Runs.

of clones is contained in {cπ(i+1), cπ(i+2), . . . , cπ(j−1)}. The lattice path correspond-
ing to this interleaving has on or below it all those cells that are not excluded. In
Section 3.1.5 we shall argue that for any permutation π the maximum interleaving
compatible with π minimizes fD(I) over all interleavings compatible with π. First
we will describe how to efficiently find the maximum interleaving.

Theorem 3.2 For given D and π, the maximum interleaving compatible with π can
be computed using time and space O(n+

∑

c∈C
∑

p∈P D(c, p)).

Proof: The algorithm in Figure 3.3 computes positive run list, a list of all the
positive runs for every probe. The algorithm assumes that the hybridization data is
presented in an ordered array of lists, where each element i in the array is a list of
the probes hybridizing to clone cπ(i). It is assumed that the probe lists have been
sorted in some fixed but arbitrary order. Let π(0) = 0 and π(n+ 1) = n+ 1 for the
first and last clones, c0 and cn+1, which are dummy clones containing no probes.
There is a dummy probe, highest in the sorting order, at the end of each probe
list.

We now calculate the excluded region. Recall that pair (i, j) denotes a
(maximal) positive run from clone cπ(i) to clone cπ(j). If i 6= 1 and j 6= n, then the
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Figure 3.4: The Relation between positive run list, E, and the Lattice Path Matrix.

pair (i, j) marks an excluded region in the lattice path matrix; i.e., cell (i− 1, j + 1)
and all cells above and to the right of it are excluded. We represent the excluded
region in an array of size n, which we call E. Each element of E represents a column
in the lattice path matrix. The value of an element of E is the row number which
lies on the perimeter within the excluded region.

First we mark all the bottom left endpoints of local excluded regions con-
tributed by positive runs. This takes time O(

∑

c∈C
∑

p∈P D(c, p)). Then we construct
the entire excluded region in time O(n). See Figures 3.5 and 3.4.

The lattice path which borders the perimeter of the excluded region repre-
sents the maximum interleaving. The path starts in the upper left cell. We construct
the path so that before it enters column j it is in row E[j]+1. The path finally exits
out of the bottom right cell. The path is constructed in time O(n). Hence the entire
running time of the algorithm is O(n+

∑

c∈C
∑

p∈P D(c, p)).

Example 3.1 In Figure 3.6 an example with clone set C = {1, . . . , 7} and probe set
P = {A,B,C,D,E, F} is shown together with the data positive and negative runs
and corresponding maximum interleaving.
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for i = 1 to n do
E[i]← 0

endfor
for each run (i, j) in positive run list such that i 6= 1 and j 6= n do
if (E[j + 1] < i− 1) then
E[j + 1]← i− 1

endif
endfor
for i = 1 to n− 1 do
if (E[i] > E[i+ 1]) then
E[i+ 1]← E[i]

endfor

Figure 3.5: Computing the Excluded Region

Consider a fixed placement ~x of the clones and let I be the interleaving
associated with this placement. Let π be the order in which the clones occur in ~x
(and I). Suppose there are m probes, each occurring in accordance with a Poisson
process of rate λ as described in Chapter 2. Let D be the incidence data between
the clones and the probes. For the given data D, let I∗ be the maximum interleaving
compatible with π. We shall argue that I∗, which can be computed from π and D,
is likely to resemble the true interleaving I: Any two clones ci and cj that overlap in
~x (and hence in I) will also overlap in I∗. If ci and cj are disjoint in ~x (and I) and
are not consecutive in the ordering π then they will be disjoint in I∗ if and only if
some clone that lies between ci and cj in π contains a probe that occurs in neither
ci nor cj . In this case the probability that ci and cj will overlap in I∗ even though
they are actually disjoint, goes to zero exponentially with m. On the other hand, if
ci and cj are consecutive in the ordering then they will overlap in I∗, even if there is
actually a gap between them. Thus, as m grows, I∗ will eventually become identical
to I, except that the gaps in I are “squeezed out” in I∗.

3.1.5 Computing minI fD(I)

We show in the following theorem and it’s corollary that the maximum
interleaving compatible with a permutation of the clones π minimizes fD(I) over all
interleavings compatible with π.
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A B C D E F G
1 0 1 0 1 0 0 1
2 0 1 1 0 0 1 0
3 1 1 1 0 0 0 0
4 0 1 1 1 0 0 1
5 1 1 0 0 1 1 1
6 0 0 0 1 1 0 0
7 1 0 0 1 0 1 1

Positive Runs Negative Runs
A 3, 5, 7 12, 4, 6
B 12345 67
C 234 1, 567
D 1, 4, 67 23, 5
E 56 1234, 7
F 2, 5, 7 1, 34, 6
G 1, 45, 7 23, 6

y y y y yyyyy y y yyy

1 2 3 4 6 75

1
2

3
4

5
6

7

Figure 3.6: The Lattice Path Corresponding to the Maximum Interleaving.
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Theorem 3.3 Let I∗ be the maximum interleaving with respect to π and D. There is
a set of elementary events S∗ relative to I∗ such that (S∗, I∗) implies D, and, for any
interleaving I compatible with π and D, and any set S of elementary events relative
to I such that (S, I) implies D, S contains at least as many positive elementary
events as S∗ does and S contains at least as many negative elementary events as S∗

does. In other words,
∑

c+ and
∑

c− are minimized in I∗.

Proof: Define S−I and S+I to be minimum sets of negative and positive elementary
events for an interleaving I, that imply the data D. Let I be any interleaving
compatible with π and D. We want to prove that |S+I∗ | ≤ |S+I | and |S−I∗ | ≤ |S−I | for
all interleavings I compatible with π and D.

S−I∗ : Every pair of clones that overlaps according to I will overlap according
to I∗. Thus for the negative run r and probe p, the negative events of S−I will imply
GOOD(r, p|I∗). The events will not force a clone that should contain a probe, to be
probe-free because I∗ does not pass through any excluded cells. We conclude that
|S−I | ≥ |S−I∗ |.

S+I∗ : We will show that for every positive elementary event in S+I , “atomic
interval a contains probe p,” there is a corresponding positive elementary event in
S+I∗ , “atomic interval a′ contains probe p,” where the set of clones containing a′ is a
superset of the set of clones containing a and does not include any clone that does
not hybridize to p. The proof similar to that given for Theorem 3.1.

To see that such a a′ exists, first consider any atomic interval a∗ in I∗

which contains all the clones of a. There must be such a a∗ because I∗ is maximum.
Suppose that a∗ cannot contain probe p because it includes a clone which does not
contain p. Since I∗ does not pass through any excluded cell, the clones in a∗ which
do not contain probe p must be on one side or the other of the clones of a.

Assume without loss of generality that the clones in a∗ which do not contain
probe p are to the left of the clones of a. Let ck be the rightmost clone containing
a, that does not contain p (See Figure 3.7). Moving to the right from a∗, we claim
we can chose a′ to be the first atomic interval which does not contain clone ck. The
atomic interval a′ includes all the clones of a and no clones which do not contain
probe p. If a′ did include a clone which did not contain probe p, it would have to be
a clone to the right of a. Then the atomic interval to the left of a′ would have been
forbidden, for it would have included clones on either side of a which did not contain
probe p.

Since every positive elementary event in I∗ can be covered by one positive
elementary event in I, S+I∗ is no larger than S+I .

Corollary 3.1 fD(I
∗) is the minimum, over all I compatible with π of fD(I) for

any nonnegative values of φ and θ.
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Figure 3.7: A Valid Marking for I∗. ck, a′, a∗, and the clones of a in I∗

Proof: c+ and c− are both minimized in I∗.

Theorem 3.4 The problem of finding an interleaving that minimizes fD(I), for ar-
bitrary values of φ and θ over all I is NP-hard.

Proof: It suffices to prove the theorem for φ = 0 and θ = 1. The proof is by
reduction from the special case of the Hamiltonian Path Problem where each vertex
has degree at least 3. The vertices map to clones, and the edges map to probes.
We use the edge incidence matrix D from G = (V,E) as our data. D is an n by m
matrix, where n = |V | and m = |E|. D(cj , pi) = 1 and D(ck, pi) = 1 for the ith edge
(j, k) ∈ E. All other entries in column i are 0. D corresponds to a special case of
data in which each probe is incident to a unique set of two clones. Thus each clone
can have a non-empty overlap with at most two other clones. The sum

∑

I∗ c
+ is

minimized over all interleavings when every clone except the first and last has a non-
empty overlap with two other clones. This is precisely the case in which there is one
connected component of clones, and thus the graph corresponding to the interleaving
has a Hamiltonian path. We conclude that

∑

I∗ c
+ ≥ (m − 1) + 2(n −m + 1), and

there is one connected component of clones if and only if equality holds.

Theorem 3.5 Given interleaving I and data D, one can compute fD(I) in time
O(n+

∑

p∈P
∑

c∈C D(c, p)).

The algorithm works separately on each run with respect to π. For each
negative run (r, p) it places in S the minimum number of negative elementary events
needed to imply that no clone in r contains p. For each positive run, it places in S the
minimum number of positive elementary events consistent with D needed to imply
that each clone in r contains p. In both the positive and negative cases, dynamic
programming is used to construct these sets. We omit the details.
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Let c(π) be the minimum, over all interleavings I compatible with π, of
fD(I). By Corollary 3.1, c(π) = fD(I

∗). Combining Theorems 3.2 and 3.5 we find
that c(π) can be computed in time O(n+

∑

p∈P
∑

c∈C D(c, p)).

3.1.6 Computing minπ c(π)

Our algorithmic approach to minimizing c(π) resembles the 2-opt, 3-opt
and Lin-Kernighan local improvement algorithms that are widely used to solve the
symmetric Traveling Salesperson Problem ([LK73]). Our algorithms require a neigh-
borhood structure on the set of permutations of {1, . . . , n}. Some possible choices
are:

The 2-opt neighborhood structure: Permutations π and σ are neighbors if and
only if σ can be obtained from π by subdividing π into three parts and reversing
the middle part; i.e., if and only if π can be written as the concatenation of α,
β and γ, and σ as the concatenation of α, βR and γ, where βR is the reversal
of β.

the 3-opt neighborhood structure: Permutations π and σ are neighbors if and
only if σ can be obtained from π by subdividing π into four parts, possibly
reversing one or both of the middle parts, and possibly interchanging the two
middle parts.

The local improvement procedure starts with a permutation π0; at a general
step, given a permutation πi, it searches for a permutation πi+1 such that πi and πi+1
are neighbors and c(πi+1) < c(πi). The computation terminates at a local minimum
when no such neighbor exists.

The main challenge in implementing our local improvement procedures is
to search efficiently through the neighborhood of the present permutation, implicitly
or explicitly computing the cost of each neighbor. A key observation is that c(π) is
a sum of independent terms corresponding to the runs associated with π. Thus, in
computing c(σ) knowing c(π), it is sufficient to add in a term for each run created,
and subtract out a term for each run destroyed, in moving from σ to π.

3.2 A Simple Approach Based on Hamming Distance

In this section we show that, when m, the number of probes, is sufficiently
large, a simple approach based on Hamming distance of clones yields the true ordering
of the clones with high probability. Let A = [aij ] be the probe distance matrix,
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that is aij is the Hamming distance between row i and row j of data D:

aij =
∑

p∈P
(D(ci, p) +D(cj , p) (mod 2)).

Also let A∗ = [a∗ij ] be the interval distance matrix, so that a∗ij is the length of the
symmetric difference between clones, viewed as intervals of unit length on the real
line:

a∗ij = min(2, |xj − xi|+ |(xj + 1)− (xi + 1)|) = 2min(1, |xj − xi|) = 2− 2xij

where xi is the left endpoint of clone ci and xij is the length of the overlap of clones
ci and cj . We also assume that there are no gaps in the placement; i.e., the set of
intervals representing clones cover the original piece of DNA.

Let τ be the true permutation of clones; i.e., the order in which they appear
in the placement. One rough approximation to τ is the so called greedy permutation
γ, which is constructed as follows: First the two clones among all pairs of clones that
are closest to each other (in the hamming metric) are identified and put together.
(Throughout, ties are broken arbitrarily.) Then, recursively, having constructed the
partial sequence of clones ci, . . . , cj , the closest clone to either ci or cj is identified
and attached to ci or cj , whichever is closer.

An alternative approximation to τ is ξ, the permutation induced by the
shortest Hamiltonian cycle with respect to the Hamming metric. We add a fictitious
empty clone which hybridizes to no probes to the set of clones. Then we construct
a complete graph whose distance matrix is given by A (with an additional row and
column corresponding to the empty clone.) After solving the Traveling Salesperson
Problem on A we obtain a cyclic ordering of clones. Then ξ is the permutation
obtained from this ordering by removing the empty clone and listing clones starting
from the one right after the empty clone and ending with the one right before it.
It turns out that ξ, herein referred to as the TSP permutation, minimizes the total
number of positive runs.

Theorem 3.6 Let D be the data with an additional empty clone added. Suppose ξ is
the permutation induced by the minimum length Hamiltonian cycle in the complete
graph whose vertices are labeled by clones (including the empty clone) and whose
edges {i, j} are labeled by the Hamming distance between rows i and j of D. If the
rows of D are arranged according to ξ, with the empty clone at the top, then the
number of positive runs in D is minimum over all other arrangements of rows of D.

Proof: Let the rows of D be arranged according to some permutation π starting
with the empty clone. If for each probe p we walk from the first row through all
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rows and then go back to the first row, then the number of transitions from 0 to 1
or from 1 to 0 is exactly twice the number of positive runs for probe p. But each
transition from 1 to 0 or 0 to 1 increases the Hamming length of the cycle induced by
π by one. Therefore, the total number of positive runs over all probes is exactly half
the length of the Hamiltonian cycle corresponding to π; in particular, the minimum
length Hamiltonian cycle corresponds to a permutation that minimizes the number
of positive runs.

Notice that if instead of an empty clone we had added the universal clone,
a fictitious clone containing all probes, then the TSP permutation would have mini-
mized the number of negative runs.

Now we argue that, as the number of probes gets very large, both the
greedy permutation γ and the TSP permutation ξ are likely to be identical to the
true permutation τ . (Recall that we do not distinguish between a permutation and
its reverse.) The following lemma shows that for the interval distance matrix A∗ the
greedy and TSP permutations are equal to the true permutation.

Lemma 3.1 Let A∗ be the interval distance matrix corresponding to a placement
~x, of unit length clones {c1, . . . , cn}, that contains no gaps, and let γ∗ and ξ∗ be
the greedy and the TSP permutations obtained from A∗. Then γ∗, ξ∗ and the true
permutation τ are identical (up to reversal).

Proof: Recall that a∗ij = 2min(1, |xi − xj |). Therefore, the problem of finding
the shortest Hamiltonian path based on A∗ is equivalent to the special case of the
Euclidean Traveling Salesperson Problem in which all cities are on a line (that is the
one-dimensional Euclidean Traveling Salesperson Problem; see Figure 3.8.) But in
this case the problem is trivial: since there are no gaps the optimal path is the one
that starts from one of the two extreme cities and goes through all cities as they
appear on the line. The greedy algorithm also finds this path from A∗. Therefore,
up to reversal γ∗ = ξ∗ = τ .

Since we do not know the original placement of clones, we we do not know
A∗. However, observe that in order to guarantee that both the greedy and TSP
permutations are identical to the true permutation it suffices to have any matrix A
with the property that for all indices i, j, k, l, aij > akl if and only if a∗ij > a∗kl. Thus
if we can show that for sufficiently large m the probe distance matrix must have this
property with high probability, then we have also shown that the greedy and TSP
permutations are equal to the true permutation with high probability.

Theorem 3.7 Let A∗ be the interval distance matrix corresponding to a placement
~x, of unit length clones {c1, . . . , cn}, that contains no gaps. Suppose P is a set of
m probes distributed independently and according to a Poisson process of rate λ, and



42 CHAPTER 3. USING OCCAM’S RAZOR

x
x

x
x

x x

x x x x x x
l2l1 l4 l5 l6l3

Figure 3.8: Mapping the Interval Distance to 1-Dimensional Euclidean Distance.

A(m) the corresponding probe distance matrix. For each pair of indices ij and kl if
a∗ij < a∗kl, then as m→∞,

Pr
[

a
(m)
ij > a

(m)
kl

]

→ 0

Proof: For a pair of clones ci and cj with an overlap of length xij , a probe p
contributes the their Hamming distance if and only if p appears in exactly one of the
two clones. The probability of this event is given by

pij = 2e−λ(1− e−λ(1−xij)).

The mutually independent events that probes {p1, p2, . . .} contribute 1 unit to the
Hamming distance between clones ci and cj may be viewed as a sequence of inde-
pendent Bernoulli trials of probability pij . Therefore, as m→∞, by the law of large
numbers, for any fixed positive real number ε

Pr





∣

∣

∣

∣

∣

∣

a
(m)
ij

m
− pij

∣

∣

∣

∣

∣

∣

> ε



→ 0

But, since a∗ij = 2 − 2xij , a
∗
ij < a∗kl if and only if pij < pkl, and therefore Pr[a

(m)
ij >

a
(m)
kl ] must also tend to zero.

By the remark preceding Theorem 3.7, as m grows the probability that γ
and ξ are equal to each other and to the true permutation tends to 1.

As we argued in the preceding section, once the order of clones is known,
the maximum interleaving corresponding to that order is most likely to be the true
interleaving. So with sufficiently large m one can solve the most likely interleaving
problem rather easily. However, for moderate size m the greedy and TSP permuta-
tions are not very close to the true permutation. Nevertheless the greedy permutation
is often a good point to start the local search strategies discussed in Section 3.1.6.
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3.3 Discussion

In this section we present some computational results based on our experi-
ments with the c++ c− objective function. In the current implementation we set the
coefficients φ and θ of c+ and c− to one. For comparison we also include one example
from the greedy and the Traveling Salesperson Problem approaches as discussed in
Section 3.2.

The experiments were conducted on simulated, rather than real data. Ac-
cording to the model of Section 2.1, we generated placements for n unit-length
clones whose left ends were uniformly and independently distributed over the in-
terval [0, N −1] (thus, the original chromosome is represented by the interval [0, N ].)
To assign m probes to the n clones according to the Poisson distribution of rate λ, we
calculated the lengths of the 2n−1 atomic intervals. Then for each atomic interval a
of length `, and each probe p, we assigned p to a (and to all clones containing a) with
probability 1 − e−λ`. Labeling clones from left to right by 1,2, ..., n, the true per-
mutation of clones was always τ = 12 · · ·n or the reverse permutation n · · · 21. (As
usual, we did not distinguish between a permutation and its reverse). This labeling
makes it convenient to compare the true permutation to the permutations generated
by our algorithms.

In each experiment we started with the greedy permutation γ, which was
generated by the greedy algorithm. We then used γ as the starting point of the 2-opt
local search algorithm with the c+ + c− objective function.

We generated data for two values of λ, namely − ln(0.75) ≈ 0.29 and
− ln(0.5) ≈ 0.69 corresponding to probabilities 25% and 50%, respectively, that a
given probe hybridizes to a clone of unit length. For each λ we generated data for
two values of coverage, c = 5 and c = 10. Throughout we fixed the number of clones
at n = 100, hence, altogether we experimented on four different placements. For
each placement, we varied the number of probes over {10, 20, 30, 50, 70}. The per-
mutations σ generated by the 2-opt heuristic are shown in Figures 3.10 through 3.13.
In each graph the the x-axis corresponds to i and the y-axis corresponds to σ(i).
Since the true permutation τ = 12 · · ·n (or its reverse), the perfect solution would
be represented by either a 45 degree line through the origin or a -45 degree line from
point (1, n) to point (n, 1). Therefore, in these graphs long stretches of ±45 degree
line segments indicate the success of the 2-opt heuristic in zeroing in on the true
permutation, and scattered short line segments mean a less successful attempt.

Overall, c+ + c− seems to be a good objective function, except for small
values of m. In Table 3.1 the c+ + c− value of the permutation generated by the
2-opt heuristic (c2) is compared with the c+ + c− values of the greedy (c1) and the
true permutations (c3). Some entries under c3 columns are marked by “*”. This
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m = 20 m = 30 m = 50 m = 70
λ c c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

0.29 2.5 739 630 672* 1224 994 1040* 2184 1756 1793* 3127 2506 2552*

5.0 528 434 419 710 625 631* 1280 1066 1066 1799 1543 1543

10.0 280 234 234 393 342 342 705 597 597 920 823 823

0.69 2.5 774 623 713* 1214 1014 1077* 2130 1778 1828* 3223 2560 2587*

5.0 564 469 432 860 672 669 1226 1131 1133* 1689 1671 1627

10.0 338 254 254 516 394 394 735 712 674 1022 984 935

Table 3.1: Comparing fD(I) for Greedy, 2-opt, and the True Permuation. c1 =
fD(Greedy), c2 = fD(2-opt), and c3 = fD(True).

indicates that in those cases, the c+ + c− value of 2-opt permutation is smaller than
that of the true permutation.

In Figure 3.9 the results of greedy and the Traveling Salesperson Problem
algorithms are compared with the c+ + c− 2-opt local optimum. For the Traveling
Salesperson Problem, a local search based on the Lin-Kernighan heuristic was used.
In this single experiment we used 200 clones, 40 probes, Poisson rate − ln(0.50), and
coverage 5. Clearly, for this experiment c+ + c− is a superior objective function.
However, we have also observed that for large m and higher coverage, the TSP
permutation and sometimes even the greedy permutation are already very close to
the true permutation. On the other hand for small values of m and low coverage all
three permutations are fairly poor.

Our experiments hint at the following phenomenon. For small values of m,
there is simply not enough information in the data to reveal the placement of clones,
and therefore, all algorithms are expected to perform poorly. For very large m, the
argument of Section 3.2 shows that even the most simple-minded method such as
the greedy algorithm is likely to find the true permutation. However, it seems that
there is a range of values for m, depending on the underlying placement, where the
result of the c+ + c− objective is superior to those of the greedy or the Traveling
Salesperson Problem heuristics.
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Figure 3.9: Pictorial Comparison of Greedy, TSP, and 2-opt with fD(I). Run with
λ = 0.69, c = 5.0, n = 200, and m = 40
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Figure 3.10: Performance of 2-opt with λ = 0.29, n = 100, c = 5
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Figure 3.11: Performance of 2-opt with λ = 0.29, n = 100, c=10
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Figure 3.12: Performance of 2-opt with λ = 0.69, n = 100, c = 5
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Figure 3.13: Performance of 2-opt with λ = 0.69, n = 100, c = 10
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Chapter 4

Minimizing Errors

(This material will also appear as [New94a].)

In this chapter we give an algorithm for evaluating a permutation of clones
based upon a minimum-error heuristic. Unlike the algorithms of Chapter 3 this
algorithm can handle more than trivial amounts of experimental error. It is most
appropriate when experimental errors are significant and the statistical model of
Chapter 2 does not apply.

4.1 Approach

The approach makes use of the fact that the typical atomic interval is
contained by several clones. In a library with coverage c, the expected number of
clones which contain a randomly chosen point of the DNA is c. The expected number
of clones which contain a randomly chosen atomic interval is approximately c. Thus,
in the absence of experimental error a mark which occurs in a typical atomic interval
will mark approximately c consecutive clones. This is true except near the ends of
the DNA where the number of active clones tapers off; the number of consecutive
clones marked by a probe in a run which includes the first or last clone may be
significantly less than c.

A probe’s data arranged in the order of the permutation of the clones is
called its signature. The algorithm evaluates a permutation of clones by looking at
each probe’s signature separately. For each probe a cost is computed and this cost is
summed over all the probes. The lower the total cost is, the better the permutation
is. When all positive runs for a given probe either contain the first or last clone or
contain at least c clones, the probe will be called proper and it will contribute a cost
of zero to the permutation. That is, a probe will be proper if its signature satisfies
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the regular expression

S
def
= 1∗(0∗1c1∗0∗)∗1∗

where α∗ means zero or more occurrences of a regular expression α and βc means
exactly c occurrences of a regular expression β. (See, for instance, [HU79] for a
discussion of regular expressions.)

A probe which has an improper signature σ will contribute a positive cost
in the evaluation of a permutation of clones. It is postulated that σ should have been
proper and that its failure be so must be the result of false positives and/or false
negatives in the hybridization data. We assess a penalty θ for each false positive and
a penalty φ for each false negative. Both θ and φ are nonnegative; at least one is
positive. The cost to transform σ to a proper signature τ is defined to be

costτ (σ)
def
= θPτ (σ) + φNτ (σ)

where Pτ (σ) is the number of 1’s in σ that are 0’s in τ (i.e., the number of false
positives in σ) and Nτ (σ) is the number of 0’s in σ that are 1’s in τ (i.e., the number
of false negatives in σ). The cost that σ contributes to the permutation of clones is

cost(σ)
def
= min

τ∈{proper signatures}
costτ (σ).

That is, the cost of σ is the “distance” to a “nearest” proper signature.

4.2 Algorithm

The cost of a signature can be computed using dynamic programming in
time O(nc) where n is the number of clones and c is the coverage specified in the
definition of S. The computation proceeds via a 2-dimensional array run.

For a signature σ, let σ(i) be the datum for the ith clone and let σi be
the prefix which is the signature for the first i clones. The 2-dimensional array run
contains some cost-like values for each of the prefixes {σi : 0 ≤ i ≤ n} of a signature
σ. The values are cost-like in that each is the “distance” of a σi to a “nearest” of a
restricted set of proper signatures.

More precisely (in the general case when i > 0 and j ≤ i) the definition of
run(i, j) is

run(i, j)
def
=































The cost for σi minimized over all proper
τi ending with one or more zeros if j = 0,
The cost for σi minimized over all proper
τi ending with exactly j ones if 0 < j < c, and
The cost for σi minimized over all proper
τi ending with c or more ones if j = c.
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These values are useful for two reasons. Firstly, cost(σ) is a minimum over all τ re-
gardless of how they end and thus it is easy to compute; cost(σ) = min0≤j≤c run(n, j).
Secondly, as it will be shown, it is easy to calculate each run(i, ·) value from the
run(i− 1, ·) values.

When σ(i) = 0 (i.e., the probe does not hybridize to the ith clone) it must
be considered either a true negative or a false negative. A true negative arises when
τ(i) = 0. In such a case, since τ is proper, τi−1 must end with a 0 or c or more 1’s.
A false negative arises when τ(i) = 1. In such a case a penalty must be paid and τi
ends with one more 1 than τi−1 does. In summary, when σ(i) = 0

run(i, j) =











min(run(i− 1, 0), run(i− 1, c)) if j = 0,
run(i− 1, j − 1) + φ if 0 < j < c,
min(run(i− 1, c− 1), run(i− 1, c)) + φ if j = c.

Similarly, when the probe does hybridize to the ith clone (i.e., when σ(i) =
1), run(i, j) satisfies

run(i, j) =











min(run(i− 1, 0), run(i− 1, c)) + θ if j = 0,
run(i− 1, j − 1) if 0 < j < c,
min(run(i− 1, c− 1), run(i− 1, c)) if j = c.

Because a proper τ may start with any number of 1’s, in the degenerate
cases run(i, j) is defined by:

run(i, j)
def
=

{

0 if i = 0 and
run(i, i) if j > i > 0.

An implementation of the algorithm is given in Figure 4.1. Note that moving
the memory allocation outside of this subroutine will be more efficient if the algorithm
is called more than once. Also note that the clones are numbered from 0 to n − 1
rather than from 1 to n.

4.3 Discussion

This algorithm was implemented to evaluate permutations of clones. The
greedy permutation (described in Section 3.2) was used as a starting point and the
2-opt heuristic for the Traveling Salesperson Problem Problem was used (see Sec-
tion 3.1.6) to search through the space of permutations for a best permutation. For
comparison purposes the (c+ + c−)-based algorithm is also shown. It too used the
greedy permutation as a starting point.
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double signature cost(
int n, /∗ The number of clones ∗/
int c, /∗ The coverage of the clones ∗/
double pospenalty, /∗ The penalty for a false positive ∗/
double negpenalty, /∗ The penalty for a false negative ∗/
int signature[ ]) /∗ The probe’s signature ∗/

{
/∗
run[j] tells how much it would cost to have j 1’s in a row up to the
current clone. When j == c it means j or more. When j == 0 it
tell’s the cost for one or more 0’s in a row up to the current clone.
∗/

double ∗run;
double runZero; /∗ Temporary storage for run[0] ∗/
int i; /∗ Index into the signature array ∗/
int j; /∗ Index into the run array ∗/
double cost; /∗ The cost of the signature ∗/

/∗ Allocate and initialize memory for the run[0..c] array ∗/
run = (double ∗) malloc((c + 1) ∗ sizeof(double));
for (j = 0; j <= c; j++)

run[j] = 0.0;

/∗ Run through the signature computing the new run[ ] values ∗/
for (i = 0; i < n; i++) {

if (signature[i] == 0) { /∗ no hybridization to this clone∗/
runZero = min(run[0], run[c]);
run[c] = min(run[c], run[c − 1]) + negpenalty;
for (j = c − 1; j > 0; j−−)

run[j] = run[j − 1] + negpenalty;
run[0] = runZero;

}
else { /∗ hybridization to this clone ∗/
runZero = min(run[0], run[c]) + pospenalty;
run[c] = min(run[c], run[c − 1]);
for (j = c − 1; j > 0; j−−)

run[j] = run[j − 1];
run[0] = runZero;

}
}

/∗ The cost of the signature is the smallest cost in run[ ] ∗/
cost = run[0];
for (j = 1; j <= c; j++)

if (run[j] < cost)
cost = run[j];

free(run); /∗ Deallocate the allocated memory ∗/
return cost;

}

Figure 4.1: Dynamic Programming Algorithm for Computing the Cost of a Probe
Signature. Note that the clones are numbered from 0 to n− 1.
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The input data was simulated. It had n = 50 clones and m = 60 probes
placed according to the stochastic model presented in Chapter 2. The Poisson rate
for the probes was 0.69314718 and the library coverage was 10.

The results are presented in Figures 4.2 and 4.3. The individual graphs show
the algorithm used and the fraction of errors in the data. Both false positives and
false negatives occurred at the stated rate and the penalties used in the Minimum-
Error algorithm for false positives and false negatives were both one. The coordinate
pair (x, y) is plotted if in position x of the final permutation appears the clone which
should have appeared in the yth position. As discussed in Section 3.3, ±45 degree line
segments indicate the success in zeroing in on the true permutation, and scattered
short line segments mean a less successful attempt.

The c+ + c− algorithm does not perform well in the presence of more than
a trivial amount of error. Observe that the graphs for 2% error or more do not show
coherent ±45 degree straight lines.

The Minimum-Error approach performs well. It is able to handle more
error than the simplistic greedy approach. At the 1%-error level the Minimum-Error
algorithm is able to clean up a pair of clones transposed in the greedy solution. At the
8%-, 10%-, and even at the 15%-error levels the Minimum-Error algorithm produces
more coherent straight lines at ±45 degrees.

The Minimum-Error approach is simple and quick and should prove to be
a valuable tool for finding clone orderings.
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Figure 4.2: The Heuristics on Data with Few Errors
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Figure 4.3: The Heuristics on Data with Many Errors
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Chapter 5

Counting Clone Orderings

(This material will also appear as [New96].)

For several computational biology problems, the number of possible solu-
tions is known. Specifically, [SSL90] discusses the number of possible solutions to the
Partial Digest Problem, [NN93] discusses it for the Probed Partial Digest Problem,
and [SW91] discusses the Double Digest Problem. This article discusses the number
of possible clone orderings that might arise in the Clone Ordering Problem.

Previous theoretical work on the Clone Ordering Problem can be found in
[LW88, ALTW91]. Algorithms for solving the Clone Ordering Problem can be found
in [AKNW93, CAT93, CNH+90, EL89].

Besides being of combinatorial interest, the value of c(n) is useful in the
calculation of the the entropy of the Clone Ordering Problem, [Spe91]. In this sit-
uation, entropy describes how many binary questions on average must be asked to
determine the clone ordering for n clones. The most straightforward approach to
this calculation involves integration in n-dimensional space of a piecewise analytic
function. The number of pieces is precisely the number of clone orderings.

5.1 What To Count

A clone ordering constructed using this experiment may not be unique.
There is no way to know the relative order along the DNA of the islands. Also, there
is no way to tell whether a given island is present as shown or if it is present as its
left-right (biologists say sense-antisense) reflection.

We say that two interleavings are topologically similar if one can be
transformed into the other by permuting the islands and/or reflecting some of the
islands. We will denote by c(n) the number of topologically distinct interleavings for
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Figure 5.1: The Two Overlap Possibilities for Two Clones — the two clones either
overlap or don’t overlap.

x 3 x 3 x 3

Figure 5.2: The Ten Possibilities For Three Clones. The second, third, and fourth
diagrams each have 3 distinguishable ways to label the clones.

n clones under the assumption that no clone includes another. For the remainder of
this chapter we will use interleaving to mean topologically distinct interleaving.

For small values of n we can enumerate the solutions by hand. For only
one clone, there is just one interleaving. With two clones there are two possibilities.
The two clones either overlap or they do not overlap. See Figure 5.1.

For three clones there are 10 possibilities. One possibility is that the three
clones are mutually nonoverlapping. A second possibility is that all three clones
overlap but clone #1 is between clones #2 and #3. A third possibility is that all
three clones overlap but clone #2 is between clones #1 and #3, and so on. See
Figure 5.2 for all 10 possibilities.

The value of c(n) for the first few values of n is given in Table 5.1. These
values were computed using the values for c(1), c(2), and c(3) and the recurrence
relation we derive,

c(n) = (4n− 5)c(n− 1)− (4n− 7)c(n− 2) + (n− 2)c(n− 3), n ≥ 4.

We define an exponential generating function C(x) =
∑∞

n=0 c(n)
xn

n! and
show that

C(x) = exp

(

1 + 2x−
√
1− 4x

4

)

.

Using Darboux’s lemma, C(x) gives us the asymptotic growth of c(n). We
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n c(n)

0 1
1 1
2 2
3 10
4 94
5 1,286
6 22,876
7 499,612
8 12,925,340
9 386,356,924

10 13,099,953,016
11 496,719,289,496
12 20,825,694,943,912
13 956,599,393,819,720
14 47,772,070,664,027,984
15 2,577,034,852,683,364,816
16 149,335,440,671,982,405,136
17 9,251,650,217,381,166,689,552
18 610,194,993,478,502,245,703,200
19 42,688,019,374,465,782,644,235,424
20 3,157,223,748,264,915,895,381,735,136

Table 5.1: The Number of Topologically Distinct Solutions to the Clone Ordering
Problem for n distinguishable equal-length clones with non-coinciding endpoints.
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show that

c(n) ∼ e3/8
√
2

8n

(

4n

e

)n

.

5.2 Combinatorics

We will derive the results using a three step process. In the first step we will
assume that the clones are indistinguishable and form one island, and we will ignore
the reflection symmetry. In the second step we will correct for distinguishability and
the reflection symmetry. In the third step we will allow more than one island.

5.2.1 Step 1

For this first step, assume that the clones are indistinguishable. Also for
this step, ignore the reflection symmetry for islands and assume that the clones form
one island.

As we did in Section 3.1.3 we will use lattice paths to represent interleavings.
Label the clones 1 to n from left to right based upon the relative order of their left
endpoints. Label the 2n clone endpoints e1 ≤ . . . ≤ e2n from left to right. These
endpoints define 2n− 1 atomic intervals (e1, e2), (e2, e3), . . . , (e2n−1, e2n).

Lemma 5.1 For any k, the set of clones containing the atomic interval (ek−1, ek)
is {i, i+ 1, . . . , j} for some 1 ≤ i ≤ j ≤ n. Futhermore, the set of clones containing
(ek, ek+1) is either {i, . . . , j + 1} or {i+ 1, . . . , j}.

Proof: Because the clones are labeled by the relative order of their left endpoints,
the set of clones with left endpoints before (ek−1, ek) is {1, . . . , j} for some 1 ≤ j ≤ n.
Because the clones are equilength, the order of their right endpoints is the same as
the order of their left endpoints. Thus, the set of clones with right endpoints before
(ek−1, ek) is {1, . . . , i − 1} for some 0 ≤ i − 1 ≤ j where i = 1 corresponds to the
empty set. Because the island is connected, i− 1 must be strictly less than j.

The endpoint ek is either a left endpoint or a right endpoint, hence the set
of clones containing (ek, ek+1) is either {i, . . . , j + 1} or {i+ 1, . . . , j}.

The path corresponding to an interleaving starts at (1, 1) at time = 1. At
time k, the path is at (i, j) with i ≤ j, where {i, . . . , j} are the clones which cover the
atomic interval (ek, ek+1). Each step is either to the right (for a clone left endpoint)
or a step down (for a clone right endpoint). The path ends at (n, n). This function
from interleavings to lattice paths is a bijection.
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Lemma 5.2 If L is a lattice path starting at (1, 1), ending at (n, n), always stepping
right or down, and only passing through cells (i, j) with i ≤ j, then there exists a
unique interleaving that gives rise to L under the above mapping.

Proof: Omitted.
Thus we can count interleavings by counting the lattice paths. Let a(n) be

the number of such paths. It is a Catalan number (see [Lov79, Cam84, EG88, Gar76,
Bro65]) and is given by

a(n) =
1

n

(

2n− 2
n− 1

)

.

It will be convenient to define a generating function (see [Wil94, GK90,
GKP89, DRS72]) for a(n). Let

A(x) =
∞
∑

n=1

a(n)xn

be a formal power series in x. A(x) has the advantage that it can be simplified:

A(x) =
∞
∑

n=1

a(n)xn =
∞
∑

n=1

1

n

(

2n− 2
n− 1

)

xn =
1−
√
1− 4x

2
.

This identity is not hard to verify using repeated differentiation. Also see [Kla70].

5.2.2 Step 2

Our next step is the return of distinguishability to the clones. Also, we will
now properly account for the reflection symmetry. However, we will still require that
the clones form one island.

Lemma 5.3 Let b(n) be the number of ways that n distinguishable equal-length
clones can be interleaved to form one island. Let

B(x) =
∞
∑

n=0

b(n)
xn

n!

be the exponential generating function for b(n). Then,

b(n) =

{

n if n ≤ 1

a(n)n!2 otherwise.

Furthermore,

B(x) =
1 + 2x−

√
1− 4x

4
.
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Notice that B(x), unlike A(x), is a formal exponential series in that each
b(n) is multiplied by xn/n!, rather than just xn, before summing. This is why B(x)
simplifies to an expression quite similar to that for A(x).

Proof: An island is symmetric if the sequence of the heights of its atomic intervals is
a palindrome. Consider an island composed of n clones. The clones in an asymmetric
island can be labeled in n! ways. If the island is symmetric and n > 1 then the clones
can be labeled in only n!/2 topologically distinct ways because of the reflection
symmetry. Notice that because we ignored the reflection symmetry previously, a(n)
double-counts asymmetric islands (of indistinguishable clones) but correctly counts
symmetric ones.

Thus when n > 1, we have that a(n)n!/2 is the number of ways that n
distinguishable equal-length clones can be interleaved to form one island. When
n = 1 there is only one interleaving possible. It is impossible to form an island with
no clones so b(0) = 0. Thus,

B(x) =
∞
∑

n=0

b(n)
xn

n!
= x+

∞
∑

n=2

a(n)n!

2

xn

n!
=

1 + 2x−
√
1− 4x

4
.

5.2.3 Step 3

We are now ready to address the real problem. We wish to count how
many interleavings are possible when we do not restrict the number of connected
components (i.e. islands) that the n clones form.

Lemma 5.4 Let c(n) be the number of interleavings (involving any number of is-
lands) for n clones. Let C(x) be the exponential generating function

C(x) =
∞
∑

n=0

c(n)
xn

n!
.

Then,

C(x) = eB(x) = exp

(

1 + 2x−
√
1− 4x

4

)

.

Proof: Consider the exponential generating function exp(B(x)):

exp(B(x)) =
∞
∑

k=0

1

k!

k
∏

i=1





∞
∑

nk=0

b(nk)
xnk

nk!




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=
∞
∑

k=0

1

k!

∞
∑

n=0



















∑

(

∑k

i=1
ni

)

=n

(

n
n1 n2 . . . nk

)(

k
∏

i=1

b(ni)

)

xn

n!



















=
∞
∑

n=0



















∞
∑

k=0

1

k!











∑

(

∑k

i=1
ni

)

=n

(

n
n1 n2 . . . nk

)(

k
∏

i=1

b(ni)

)





























xn

n!

where

(

n
n1 n2 . . . nk

)

is the multinomial coefficient n!
∏k

i=1
ni!

.

The coefficient of xn

n! in a single term of the innermost summation is of the
form

(

n
n1 n2 . . . nk

)(

k
∏

i=1

b(ni)

)

.

The multinomial coefficient counts the number of ways to allocate n clones among
k islands where the ith island from the left gets ni clones. Conditioned upon this
distribution, each b(ni) factor counts how many ways the clones allocated to the
ith island can be arranged within that island. Thus, this term counts the number
of ways n clones can be distributed within k ordered islands with sizes n1, . . . , nk.
The summantion over all positive ni subject to (

∑

ni) = n gives a count of the
number of ways n clones can be distributed within k ordered islands, regardless of
their sizes. The k! divisor cancels the overcounting we have introduced by ignoring
the equivalence of interleavings in which the islands are permuted. (Notice that the
k! divisor is appropriate even if two or more of the k islands have the same size
because these islands are distinguished by the clones they contain.) The summation
over all k gives the number of ways n clones can be distributed within any number
of unordered islands. That is, it is the number of interleavings for n clones.

The use of exponentials in exponential generating functions is described in
[DRS72, Example 5.5, p. 287].

5.3 Recurrence Relation and Asymptotic Growth

5.3.1 Recurrence Relation

Because of its complexity we cannot solve explicitly for the power series of
C(x). However, we can find an easy recurrence relation by using the fact that C(x)
satisfies a simple differential equation.
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Lemma 5.5

c(n) = (4n− 5)c(n− 1)− (4n− 7)c(n− 2) + (n− 2)c(n− 3)

for n ≥ 3.

Proof: The first two derivatives of C(x) are

dC(x)

dx
=

(

1

2
− 1

2
√
1− 4x

)

C(x)

d2C(x)

dx2
=

(

1

4
+

1

2
√
1− 4x

+
1

4(1− 4x)
+

1

(1− 4x)
√
1− 4x

)

C(x)

The factors of
√
1− 4x are troublesome so we solve for C(x)/

√
1− 4x in the first

equation and substitute into the second equation. We see that C(x) satisfies the
differential equation

(1− 4x)
d2C

dx2
+ (4x− 3)

dC

dx
+ (1− x)C = 0.

Substituting in the definition for C(x) we get

(1− 4x)
∞
∑

n=2

c(n)
xn−2

(n− 2)!
+ (4x− 3)

∞
∑

n=1

c(n)
xn−1

(n− 1)!
+ (1− x)

∞
∑

n=0

c(n)
xn

n!
= 0.

A power series can only be zero if the coefficient of every term is zero. This
fact and the application of a little algebra to the above formula gives the desired
result.

This relation provides a way to compute c(n) using Θ(n) arithmetic opera-
tions. The first few values of c(n) can be found in Table 5.1. Note that this sequence
is not in Sloane’s Handbook of Integer Sequences, [Slo73].

5.3.2 Asymptotic Growth

We can calculate the asymptotic growth of c(n) via Darboux’s lemma
(see [Wil94, p. 148]) applied to C(x).

Lemma 5.6

c(n) ∼ e3/8
√
2

8n

(

4n

e

)n
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Proof: The singularity of C(x) nearest to the origin of the complex plane (and, in
fact, the only singularity) is at x = 1/4. We will express C(x) in terms of functions
with a singularity at x = 1/4, but simpler, and functions with a radius of convergence
about the origin larger than 1/4. We decompose C(x) as follows:

C(x) = exp

(

1 + 2x

4

)

exp

(

−
√
1− 4x

4

)

= exp

(

1 + 2x

4

)



cosh

(√
1− 4x

4

)

−
√
1− 4x

4

sinh
(√

1−4x
4

)

√
1− 4x/4





= exp

(

1 + 2x

4

)

[

cosh

(√
1− 4x

4

)

−
√
1− 4x

4
H(

√
1− 4x

4
)

]

where H(y) is defined to be sinh(y)/y. Notice that both cosh(·) and H(·) are
even functions and “cancel out” the square-roots in their argument. The functions

exp(1+2x4 ), cosh(
√
1−4x
4 ), and H(

√
1−4x
4 ) are entire (i.e., analytic over the entire com-

plex plane) functions of x.
According to Darboux’s lemma the asymptotic growth of c(n) will be the

same as the asymptotic growth indicated by the simplified generating function which
is obtained by replacing those functions which are analytic over a radius greater
than 1/4 by their values at the singularity x = 1/4. Thus, c(n) is asymptotic to the
coefficient of xn/n! in the generating function

e3/8
(

1−
√
1− 4x

4

)

where we have used the fact that limx→0 sinh(x)/x = 1. The exponential generating
function

1−
√
1− 4x

4

defines b(n) for n > 1, thus we conclude that

c(n) ∼ e3/8b(n)

∼ e3/8
(2n− 2)!

2(n− 1)!

∼ e3/8
√
2

8n

(

4n

e

)n

where we have used Stirling’s formula, n! ∼
√
2πnnne−n.
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Part II

Probed Partial Digests
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Chapter 6

A Branch-And-Bound

Algorithm

(This material will also appear as [KN95].)

Under certain experimental conditions a restriction enzyme cuts at some
but not all sites where the DNA matches the pattern. This process is called partial
digestion. (See [KAI87].) Many copies of a clone are partially digested at once. In
(unprobed) partial digestion, for each pair of cut sites a fragment is obtained which
is a copy of the DNA between those two cut sites. However, it is not known which
pair of cut sites produces which fragment. Using gel electrophoresis the lengths
of these fragments are measured. From these lengths, the original locations of the
cut sites can be reconstructed. The algorithms for this task vary in efficiency and in
ability to handle errors in measurements. See [CGL+89, SSL90, SS94].

In probed partial digestion, a probe is chosen which hybridizes to the
uncut clone in a unique location. The copies of the clone are partially digested, but
the only lengths measured are those of fragments which hybridize to the radioactively
or fluorescently labeled probe. (See [SES+87].)

In this chapter we give an efficient algorithm for interpreting the data from a
probed partial digestion experiment. The algorithm produces one or more candidate
solutions, each of which designates the locations of the cut sites and specifies the end
points of each fragment. If necessary, further experiments can then be designed to
select the most likely solution from this small set of candidates. Such a solution is
useful in DNA mapping for it provides a fingerprint of the clone. Two clones can be
hypothesized to overlap if the right part of the restriction map for one clone agrees
with the left part of the restriction map for the other clone.

The algorithm works well even when there are errors in the length mea-
surements. The resilience is derived, in part, from the algorithm’s heavier reliance

71
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M = the experimentally measured fragment lengths
N = fragments with neither x0 nor y0 as an endpoint
X = fragments with x0 but not y0 as an endpoint
Y = fragments with y0 but not x0 as an endpoint
B = the fragment that has both x0 and y0 as endpoints
C = (X ∪B) + (Y ∪B)−B, the computed fragment lengths
Z = the fragment lengths not yet assigned to N,X, Y, or B.

Table 6.1: Multisets Used by the Probed Partial Digest Algorithm

on the lengths of the shorter fragments, which are measured more accurately in the
experiment. The algorithm cannot handle the cases in which some measurements are
completely lost. In many cases there may be more than one mathematically correct
solution (see Chapter 7 and [NN93]). The algorithm handles this gracefully in that
it need not be terminated when the first solution is produced. It will generate all
solutions, in descending order of quality, until terminated by the user.

A solution to the Probed Partial Digest Mapping Problem is in the
form of a complete assignment of the fragment lengths to four multisets. (A
multiset is a set in which elements may appear more than once.) Let x0 be the
nearest cut site on one side of the probe and let y0 be the nearest cut site on the other
side of the probe. Each fragment that includes the probe site is assigned to one of four
multisets; this assignment depends on how the endpoints of the fragment compare to
{x0, y0}. The shortest fragment, which must represent the interval that has both x0
and y0 as endpoints, is assigned to the one-element multiset B. Fragments with one
endpoint at x0 and the other not at y0 are assigned to the multiset X. Fragments
with one endpoint at y0 and the other not at x0 are assigned to the multiset Y . All
other fragments are assigned to the multiset N . See Table 6.1 and Figure 6.1.

As well as acting as a fingerprint, the collection of fragments whose lengths
are assigned to X or Y can be used to locate markers on the clone. Each atomic
interval is contained by a unique subset of this collection. Hence, knowledge of
which fragments contain the marker is sufficient for determining the atomic interval
in which it lies. For instance, any marker present on all X fragments but the shortest
and absent from all other fragments must lie in the atomic interval between x1 and
x2 shown in Figure 6.2.

Given a particular complete assignment it is easy to compute, from the
lengths in X, Y , and B, what the lengths in N ought to be. Using multiset addition
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y1 x0 Probe y0 x1 x2

Y
N
N

B
X
X

Figure 6.1: The Fragments Produced by Probed Partial Digestion

y1 x0 y0 x1 x2

Y
X
X

Figure 6.2: The Fragments Found by the Algorithm
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and subtraction notation we write

X + Y −B def
= {x+ y − b : x ∈ X, y ∈ Y, b ∈ B}

for these lengths. Since B has one element, the size of this multiset is |X| · |Y |. The
union of this multiset with the multisets X,Y, and B is the multiset of computed
lengths, C. (Note that, with multisets, the number of occurrences of an element in
a union of multisets is the sum of the numbers of occurrences of that element in those
multisets.) The computed multiset can also be written as C = (X∪B)+(Y ∪B)−B
and we see immediately that the number of elements in the computed multiset is

|C| = (|X|+ 1)(|Y |+ 1).

Example: From X = {6, 8, 9}, Y = {7, 9, 12, 14}, and B = {5} we compute C =
X + Y −B = {5, 6, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 17, 18}.

If the complete assignment is correct then, in the absence of experimental
error, the multisets C and M should be identical. A comparison of C against the
measured fragment lengths M gives a measure of the quality of the complete as-
signment; the more similar C and M are, the more likely it is that a hypothesized
complete assignment is the biologically correct answer. To ascertain the similarity,
the lengths in C are paired up with those in M . A positive cost (i.e., penalty) is
associated with those pairs in which the paired lengths differ. The cost as a function
of the two lengths is determined by the error model for the experiment and the cost
of a complete assignment is the minimum, over all possible pairings, of the sum of
the costs of the pairs. The goal of the algorithm is to find the complete assignment(s)
with the smallest cost.

The algorithm considers the elements of M in ascending order, and assigns
each element to one of the sets B, X, Y and N . Until all the elements are assigned,
an assignment is called partial. A data structure called a priority queue (see, for
instance, [CLR90]) is created to contain a collection of partial assignments. The pri-
ority queue efficiently supports two operations: the insertion of a partial assignments
and the removal of a partial assignment of minimum cost. The Branch and Bound
Technique (see [CLR90]) is applied to speed the exponential search through the uni-
verse of assignments. In a general step, a lowest cost partial assignment is removed
from the priority queue and replaced by several, more complete, partial assignments.
These are generated by choosing an assignment for the first unassigned element of
M .

As with a complete assignment, the cost of a partial assignment is evaluated
by checking the fragment lengths it implies against the input M . The elements
already assigned imply that certain lengths (plus or minus experimental error) ought
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to belong to M . Furthermore, there is a lower bound on the length of any fragment
that might be implied by a future assignment. As described later, the cost of a
partial assignment is computed using this information. The cost function has the
property that an extended assignment always costs at least as much as the partial
assignment from which it was extended.

6.1 Algorithm

6.1.1 Branch and Bound

The elements of M are assigned in ascending order. The smallest element
must be the distance from x0 to y0. This element will be the element assigned
to B. Without loss of generality, the second smallest element of M is assigned to
the multiset X. This assignment of the first two elements of M is the first partial
assignment to be placed in the priority queue.

In the general step, a partial assignment of minimum cost is removed from
the priority queue. If the partial assignment is complete, (i.e., all elements of M
have been assigned) it is given as output. Otherwise three partial assignments are
inserted into the priority queue. These are created by assigning a least unassigned
value of M to X, Y, or N . Because the cost function has the property that an
extended assignment always costs at least as much as the partial assignment from
which it was extended, the first complete assignment produced by the algorithm will
be of minimum cost. If the algorithm is not terminated when it produces the first
minimum cost complete assignment, it will continue to produce complete assignments
in nondecreasing order of cost.

The need for a priority queue can be eliminated if a different form of Branch
and Bound is used. This may be advantageous under circumstances where space us-
age (i.e., the amount of computer memory required) is more critical than running
time. In this alternate implementation a Depth-First Search is used. (See [CLR90],
for instance, for a description of depth-first search, rooted trees, etc.) The initial
priority queue entry is the root of a tree of partial assignments. Every partial assign-
ment is represented by an internal node of the tree and has a directed edge pointing
to each of the three assignments that can be formed by assigning the least unassigned
length. The complete assignments are the leaves of the tree. The goal, to find the
cheapest complete assignment(s), is accomplished via standard Depth-First Search
except that if an encountered partial assignment is found with cost exceeding some
fixed bound then the edges of the tree leading from that assignment are not explored.
Any leaves reached by the search are complete solutions to be output.

Care must be taken in chosing a cost bound. A bound too low may result
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in the discovery of fewer low cost complete assignments than desired. If this occurs,
the bound should be increased and the search should be restarted. A bound too
high may cause the algorithm to spend large amounts of time exploring assignments
that are of no interest. If during the search the algorithm has found an excessive
number of solutions and/or explores an excessive number of assignments then the
search should be restarted with a lower cost bound.

6.1.2 The Cost of a Partial Assignment

For a partial assignment let N, X, Y, and B be the multisets of already
assigned lengths and let Z be those lengths not yet assigned.

If the partial assignment (N,X, Y,B,Z) is to lead to a good complete assign-
ment, the multiset M must contain data similar to that in the multiset of computed
fragment lengths C (see Table 6.1). In particular, if |C| > |M | then the partial
assignment cannot lead to a complete solution and is given infinite cost. On the
flip side, the partial assignment is also given infinite cost if every complete solution
to which it may lead has a computed fragment length multiset with size strictly
smaller than |M |. This maximum obtainable size is not hard to compute: Since
|C| = (|X|+ 1)(|Y |+ 1), the size of C will be maximized if all the elements of Z are
assigned to X or Y (but not N) in such a way that |X| and |Y | are as nearly equal
as possible.

If a partial assignment passes these two size tests, it is checked for compat-
ibility with M . It is assigned a nonnegative cost which is low if the compatibility is
good and high if it is not. The compatibility test involves a matching which pairs
elements of C with elements of M . Since all solutions extended from this partial
assignment will have computed fragment length multisets which contain C, for every
length in C there should be a corresponding length in M . (The matched lengths
should be roughly equal, though the possibility of experimental error dictates that
we cannot insist upon strict equality.) However, since the computed fragment length
multiset may grow with future assignments not every element of M need have a
match in C. Thus, for the purpose of matching, a special element cutoff is added to
C. It will be matched with every element of M not matched to an ordinary element
of C. In the event that Z is empty, |C| = |M | by the size tests and cutoff is not
used.

A matching is a function µ : M → C which takes an element of M to its
match in C. The function is bijective (i.e., one-to-one and onto) except that more
than one element of M may map to the cutoff element of C. The cost of the entire
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matching is defined by

Costµ(M,C)
def
=

∑

m∈M
cost(m,µ(m))

where cost(m,µ(m)) measures the quality of the match, m ↔ µ(m). The qual-
ity of the partial assignment is given by the cost of a matching which minimizes
Costµ(M,C).

6.1.3 The Cost of a Pair

The nonnegative cost function cost(m, c) should reflect the error model. For
instance, if one assumes that the error in the measurement of the length of a fragment
obeys a Gaussian distribution with standard deviation proportional to the fragment’s
length then one should use cost(m, c) = | log(m) − log(c)|2. The logarithms change
the scale so that the distribution of error is independent of fragment length. The
quantity is squared so that it can be combined by summing with other independent
pairings that obey a Gaussian distribution.

If one assumes that the error is Gaussian with standard deviation indepen-
dent of the the fragment length then one should use cost(m, c) = |m− c|2. We tested
the algorithm under the assumption that the distance a fragment travels in a gel is
inversely proportional to its length and that the error in measuring gel position is
Gaussian with standard deviation independent of gel position. Hence we use

cost(m, c) =

∣

∣

∣

∣

1

m
− 1

c

∣

∣

∣

∣

2

.

With regard to the special element cutoff , cost must satisfy

cost(m, cutoff ) =

{

0 if m ≥ minZ,
cost(m,minZ) otherwise.

This reflects the fact that, as the result of future assignments, the smallest element
that might be added to X or Y and hence to C is minZ. This requirement incor-
porates into Costµ(M,C), a lower bound on the cost of future assignments. Hence
it gives a lower bound to the cost of all complete solutions to which the partial
assignment may lead.

For any of these three choices cost satisfies the following regularity property.
For all m ≤ m′ and all c ≤ c′,

cost(m, c) + cost(m′, c′) ≤ cost(m, c′) + cost(m′, c).
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(In fact, if cost(m, c) = |f(m)− f(c)|2 for any monotonic function f() then cost will
satisfy this regularity property.) For any cost(m, c) satisfying this regularity property
it is never worse to match the elements in order than out of order. For equal size
multisets, M , C, the property implies that a best matching is one in which the
smallest element of M is matched to the smallest element of C, the second smallest
element of M is matched to the second smallest element of C, etc.

6.1.4 Finding the Cost of an Optimal Matching

The value Cost(M,C), the minimum over all matchings of Costµ(M,C),
can be found efficiently using dynamic programming. Write ci for the ith lowest
element of C and write Ci for the multiset {c1, . . . , ci}. Define mi and Mi similarly.
For i ≥ j ≥ 0, let Cost(Mi, Cj) be the minimum cost of a matching between Mi and
Cj ∪ {cutoff }. In the degenerate cases, define

Cost(Mi, Cj) =

{

0 if i = j = 0,
+∞ if i < 0, j < 0, or i < j.

Because of the regularity restriction on the function cost , in a best matching
those elements of Mi not matched to cutoff will be matched in ascending order to
the elements of Cj in ascending order. In particular, when computing Cost(Mi, Cj),
mi will be matched to cj or cutoff . Thus, for i ≥ j ≥ 0, Cost(Mi, Cj) satisfies the
recursive relation:

Cost(Mi, Cj) = min{ cost(mi, cj) + Cost(Mi−1, Cj−1),

cost(mi, cutoff ) + Cost(Mi−1, Cj)}.

That is, mi must be matched to cj or cutoff , and once it is, the problem is reduced to
a smaller version of the problem. Thus, standard dynamic programming techniques
can be used to find Cost(M,C); Figure 6.3 contains a sample program. Note that
the occurrence of m − c as the upper bound of the inner loop keeps the algorithm
from computing values of Cost(Mi, Cj) that cannot contribute to the return value
Cost(M,C).

As an example, suppose the probe is at position 10 and the cut sites are at
2, 3, 8, 12, and 19. If there is no error, the probed partial digestion experiment will
produce the lengths M = {4, 9, 10, 11, 16, 17}. Our goal is to correctly classify these
lengths to B,X, Y, and N . A biologically correct solution is to assign the lengths, in
order, to B,X,X, Y,N and N .

Suppose we wish to evaluate the partial assignment B = {4}, X = {9}, Y =
{10}, N = ∅, Z = {11, 16, 17}. We compute C = (X ∪ B) + (Y ∪ B) − B =
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double cost(
double m, /∗ A measured length ∗/
double c) /∗ A computed length ∗/

{
if (c <= 0.0) { /∗ If c <= 0.0 then it is the negative of a cutoff ∗/

c = −c;
if (m >= c) {

return 0.0;}} /∗ m is above the cutoff ∗/

return (1/m − 1/c) ∗ (1/m − 1/c);
}

double best match(
int m, /∗ The number of measured lengths ∗/
double measured[ ], /∗ The measured lengths, sorted ∗/
int c, /∗ The number of computed lengths ∗/
double computed[ ], /∗ The computed lengths, sorted ∗/
double cutoff) /∗ The shortest unassigned length ∗/

{
double ∗value; /∗ value[i] = Cost(M[j+i], C[j]) for the implied j ∗/
int i; /∗ Index into the measured[ ] array ∗/
int j; /∗ Index into the computed[ ] array ∗/

/∗ Allocate memory for value[0..m−c] ∗/
value = (double ∗) malloc((m − c + 1) ∗ sizeof(double));

/∗ Fill in value[ ] for j = 0 ∗/
value[0] = 0.0;
for (i = 1; i <= m − c; i++) {

value[i] = cost(measured[i], −cutoff) + value[i − 1];}

/∗ Repeat for each computed length ∗/
for (j = 1; j <= c; j++) {

value[0] = cost(measured[j], computed[j]) + value[0];
for (i = 1; i <= m − c; i++) {
value[i] = min(cost(measured[j + i], −cutoff) + value[i − 1],

cost(measured[j + i], computed[j]) + value[i]);}}

free(value); /∗ Deallocate the allocated memory ∗/

return value[m − c];
}

Figure 6.3: Dynamic Programming Algorithm for Computing the Cost of an Opti-
mal Matching



80 CHAPTER 6. A BRANCH-AND-BOUND ALGORITHM

j cj
i 0 1 2 3 4 5 6

mi 4 9 10 11 16 17

0 .000000 .025310 .025718 .025801 .025801 .025801 .025801
1 4 +∞ .000000 .000408 .000491 .000491 .000491 .000491
2 9 +∞ +∞ .000000 .000083 .000083 .000083 .000083
3 10 +∞ +∞ +∞ .000000 .000000 .000000 .000000
4 15 +∞ +∞ +∞ +∞ .000588 .000017 .000017

Table 6.2: An Example of the Cost Computation for a Partial Assignment Using
cost(m, c) = |1/m − 1/c|2, cutoff = 11. All values are shown although only those
on the diagonal from the upper left corner and the adjacent two diagonals to its
right are needed for the computation of Cost(M,C) = Cost(M6, C4).

{4, 9} + {4, 10} − {4} = {4, 9, 10, 15} and minZ = 11. The dynamic programming
algorithm optimally matches C ∪ {cutoff } with M . For cost(m, c) = |1/m − 1/c|2,
the values of Cost(Mi, Cj) are in Table 6.2. The cost of an optimal matching is
Cost(M6, C4) = .000017. In this case, the cost of the partial assignment comes from
an optimal matching which is unique. It matches the elements of M , in order, to
4, 9, 10, cutoff , 15, cutoff .

6.2 Discussion

Let N = |M | be the number of fragment lengths given as input to the
algorithm. The dynamic programming step of the algorithm requires a constant
amount of time to compute each Cost(Mi, Cj) from previous values. Since for a
given partial assignment there may be O(N 2) values of Cost(Mi, Cj) to compute,
the evaluation of a partial assignment requires O(N 2) time.

If a priority queue is used, each step of the Branch and Bound portion of the
algorithm requires O(logN) time for the priority queue operations. However, this is
dominated by the time to evaluate the cost of the three extended partial assignments.
Thus the total running time of the algorithm is O(iN 2) where i is the number of
Branch and Bound iterations required. In theory, i can be as large as 3N−2 but in
practice it is much smaller.
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6.2.1 Using a Priority Queue

The algorithm using a priority queue was tested on several different sets of
randomly generated data. The sets are characterized by size and error level. Sizes
are written x× y to indicate how many cut sites are before and after the probe site.
The product xy is the number of distinct fragments produced by the experiment.

The error level describes the error in a measurement of a fragment of unit
length. It is assumed that the distance a fragment travels in a gel is inversely pro-
portional to its length and that the uncertainty in measuring its gel position is a
Gaussian with a standard deviation which is independent of that position. Under
such circumstances, a typical error in a value obtained for a fragment length (as op-
posed to a value for gel position) will be proportional to the square of the fragment
length. With the clone length normalized to unity, an error level of ε implies that
the measurement of a fragment of length m will have a standard deviation of εm2.

The error level is based upon the error in measuring a single fragment length
independent of the other fragment lengths. For instance, a gel inaccuracy that causes
all fragments to appear approximately 5% too long will not hinder the performance
of the algorithm and is not included in the definition of error level. If for a particular
experiment, a fragment of unit length would be typically measured with error around
1% even when all other fragments were measured accurately then an error level of 1%
is appropriate.

For size x× y the x+ y cut sites are chosen uniformly at random on a clone
with length normalized to unity. From these cut sites the xy exact fragment lengths
are calculated. In the cases of non-zero error level each fragment length is perturbed
by an amount which is generated from a Gaussian distribution with the appropriate
standard deviation. Note, however, that the perturbation is not allowed to change
the order of the fragments’ lengths. If the perturbation results in a change in the
order of the fragments’ lengths, the perturbed lengths are sorted in ascending order
and are matched with the exact lengths in ascending order.

For each set, 100 instances were run. The results are in Tables 6.3 and 6.4.
Note that every data instance M produced a trivial solution: B = {minM},
X = M\{minM}, Y = ∅, N = ∅. It corresponds to a restriction map in which
the probe site separates one cut site from all the others. The lengths measured are
those from the one cut site to each of the other cut sites. Although mathematically
correct, this zero-cost solution is uninteresting biologically. The correct solution may
be ranked first, second, etc. among the non-trivial solutions produced. The tables
give how many correct complete assignments appeared at each rank and the average
number of priority queue deletions (i.e., Branch and Bound iterations) required to
produce all solutions up to that rank.
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0% Error 1% Error 3% Error 5% Error
Rank Deletes Correct Deletes Correct Deletes Correct Deletes Correct

trivial 55.28 0% 29.00 0% 29.00 0% 29.00 0%
1 56.28 100% 157.28 60% 667.64 30% 1821.43 9%
2 100.89 0% 197.36 21% 705.71 16% 1869.68 10%
3 157.95 0% 257.14 4% 784.14 10% 2021.64 3%
4 214.79 0% 300.72 8% 902.08 5% 2096.37 4%
5 302.37 0% 376.72 2% 962.59 3% 2206.25 3%
6 339.17 0% 436.25 0% 1002.08 2% 2320.30 3%
7 417.45 0% 532.37 0% 1082.09 3% 2423.18 0%
8 535.87 0% 601.68 0% 1126.65 0% 2469.01 1%
9 597.14 0% 675.51 2% 1219.02 1% 2561.39 2%
10 645.86 0% 738.58 0% 1265.37 3% 2623.78 1%

> 10 0% 3% 27% 64%

Table 6.3: The Average Number of Priority Queue Deletions and the Number of
Correct Solutions Appearing at Each Rank for Problems of Size 6× 5.

The data in Table 6.3 is intended to be typical of existing technology. The
measurement of 30 fragments at an error level of 3% – 5% is feasible. The results are
good; at the 3% error level, the correct assignment appeared as one of the first three
complete assignments found in over half of the randomly generated instances, and
appeared among the top ten in almost three-quarters of the instances. By observing
how the top solutions differ and running experiments to test for these differences one
can easily eliminate the spurious solutions.

The data in Table 6.4 gives a glimpse of the future. Because of the high
number of fragments, measurements must have an error level not much more than
0.3% if the correct solution is to be found (using any algorithm) among those complete
assignments with the smallest cost. Once the technology has improved to the point
that the correct solution is among the assignments of lowest cost, the algorithm
presented here will narrow the problem to that of finding the correct solution among
a handful of complete assignments.

6.2.2 Using Depth-First Search

For the space-saving Depth-First Search version of the algorithm it is im-
portant that the initial cost bound be less than or equal to the cost bound that would
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0.0% Error 0.1% Error 0.2% Error 0.3% Error
Rank Deletes Correct Deletes Correct Deletes Correct Deletes Correct

trivial 234.98 0% 119.00 0% 119.00 0% 119.00 0%
1 235.98 100% 426.37 64% 876.51 51% 2359.14 34%
2 330.70 0% 491.58 24% 959.72 17% 2441.74 24%
3 438.68 0% 585.06 4% 1091.53 10% 2737.44 12%
4 512.65 0% 657.49 4% 1177.66 7% 2846.59 3%
5 617.10 0% 771.27 1% 1413.03 4% 3018.66 7%
6 684.71 0% 842.52 2% 1538.11 2% 3106.61 4%
7 778.01 0% 956.32 0% 2158.15 3% 3260.89 5%
8 858.58 0% 1015.67 0% 2263.24 1% 3336.99 1%
9 951.20 0% 1139.09 0% 2516.03 0% 3494.91 0%
10 1020.34 0% 1200.84 0% 2630.78 0% 3569.40 1%

> 10 0% 1% 5% 9%

Table 6.4: The Average Number of Priority Queue Deletions and the Number of
Correct Solutions Appearing at Each Rank for Problems of Size 12× 10.

produce the number of correct solutions. Even when the initial cost bound is too
small the amount of time wasted in finding too few solutions is small compared to
the amount of time that will be needed to find sufficiently many solutions. A bound
that is too large even by a little can be disastrous since running time is likely to be
exponential as a function of the bound.

We have found that the value b = 1/N 2`2, where N is the number of
fragments and ` is the length of the clone (or of the longest fragment) makes a good
initial cost bound for the cost function cost(m, c) = |1/m − 1/c|2. If the bound
proves to be too low we use a bound of 2b for the second attempt. If the cost bound
is still too low after two or more attempts we fit w(b) the amount of work (i.e., the
number the nodes explored) for the two most recent runs to an exponential with two
parameters: w(b) = c1e

c2b. The new bound is chosen so that the amount of work
it will require (as predicted by the exponential) will be twice the amount of work
done for the most recent bound. If the predictions are accurate this guarantees that
running time for the last cost bound used will be at least half of the total running
time. Furthermore, the last bound’s running time will be at most twice the running
time of a perfectly guessed cost bound. Thus the the total running time of the
algorithm will be at most four times that which would have been needed if we were
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able to perfectly guess a cost bound that produced the correct number of solutions.
Letting b′ be the most recent bound and b′′ be the second-most recent

bound, the new bound b is given by the formula

b = b′ +
b′ − b′′

log2w(b
′)/w(b′′)

.

As a practical matter, to prevent huge changes in the cost bound, if log2w(b
′)/w(b′′)

is less than 1/4 it is replaced by 1/4 in the above formula.



Chapter 7

Counting Probed Partial Digest

Maps

(This material also appeared as [NN93].)

The probed partial digest (or PPD) mapping scheme is used to generate
restriction maps of cloned DNA fragments. The objective: to reconstruct the linear
order of the restriction sites using the lengths of subfragments that hybridize to a
probe. (The experiment is introduced in Chapter 6).

The computational problem of reconstructing the linear order is a difficult
one. One of the difficulties is the multiplicity of solutions. That is, in many cases,
more than one underlying linear ordering is consistent with a multiset of measured
lengths, although in reality there is only one true linear order for the restriction
enzyme cutting sites. Since, without additional information, there is no way to
distinguish between the true linear order and any other consistent order, the objective
is to reconstruct all possible solutions and leave it to the biologists to decide which
solution is most likely to be the right one.

The fact that a given multiset of measured lengths may have multiple solu-
tions has two implications. First, by the discussion above, it affects the efficiency of
any algorithm that reconstructs the restriction enzyme map. It also reflects on the
power of the mapping scheme to resolve ambiguities among maps; that is, a mapping
scheme that yields many consistent maps may not be adequate. The question of
multiplicity of solutions for other types of DNA mapping strategies has been previ-
ously addressed. It [GW87] it is shown that if the enzyme sites are modeled as a
Poisson process, then the Double Digest Mapping Problem can attain as many as
an exponential number of solutions in the limit; these solutions have been further
characterized in [SW91]. The status of the question for (unprobed) Partial Digest
mapping is summarized later in this article.

85
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We show in Section 7.1 that PPD is equivalent to the following multiset-
addition problem: Let X and Y denote sets of nonnegative integers. Let S be
a multiset of nonnegative integers containing exactly one zero. Given S find all
unordered pairs {X,Y } such that

S = X + Y = {x+ y : x ∈ X, y ∈ Y }.

For instance, for S = {0, 1, 1, 2, 2, 3, 3, 4, 5} the pair X = {0, 1, 2}, Y = {0, 1, 3}
satisfies S = X + Y . In this article we discuss how many solutions this multiset-
addition problem, and therefore the Probed Partial Digest Mapping Problem, might
have for a given input multiset S.

A related problem, the (unprobed) Partial Digest Mapping Problem, is
well studied and is discussed in [AY88, Bel88, DK88, RS82, SSL90, Ste78, TDMH88].
This problem is equivalent to the following multiset-subtraction problem: Given a
multiset S of positive integers, find a set X such that

S = {a− b : a, b ∈ X, a > b}.

In [SSL90] it is shown that there are at most 0.5N 0.61624135 solutions to this multiset-
subtraction problem for any multiset S of size N .

The PPD Mapping Problem can have more solutions. Define #ppd(S) to
be the number of solutions for a multiset S that contains exactly one zero. It is
shown in [Nao90] that there are infinitely many values N for which there exists a
multiset S, of size N , with #ppd(S) ≥ 0.5N . This chapter generalizes and improves
this bound. Define

#PPD(N) = sup{#ppd(S) : |S| = N}.

We show that

lim sup
N→∞

#PPD(N)

N t
=∞

for all t < ζ−1(2) where ζ(t) is the Riemann Zeta Function and ζ−1(2) ≈ 1.73.
Biologists may find this result disenheartening for it implies that the infor-

mation derived from a PPD experiment is not sufficient to determine the linear order
of the restriction enzyme cutting sites in all cases. Even though there is only one
real linear ordering of the restriction enzyme cutting sites, there may be many linear
orderings which are consistent with the fragment lengths measured by experiment.
Furthermore, it is not yet known how bad this phenomenon can get. We have a lower
bound, but no upper bound, on the number of solutions in the worst case.

However, it is still left to be determined how bad this phenomenon is in the
average case. The PPD experiment is still viable, if there is only one solution (or
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very few solutions) on average. Another experimental technique should be employed
in those few cases where the number of PPD solutions is excessive.

In fact, we simulated the PPD experiment on two real DNA vectors (cir-
cular DNA strands), the M13 and the Colicin E1 vectors, which are 6407 and 6576
nucleotides (characters) long respectively. We generated 45 multisets for the M13
and 69 multisets for the Colicin with different restriction enzymes. (This was done by
obtaining the cutting sites of many restriction enzymes along these vectors; then, for
each restriction enzyme we generated a random location for the probe and produced
the multiset of lengths implied by the PPD experiment with this pair of enzyme and
probe). The number of cutting sites in each instance varied from 5 to 55, and the
size of the multisets ranged from 10 to about 800. Each multiset had one solution,
namely the true linear order it was derived from. None of these multisets produced
any other solution. This simulation suggests that the number of solutions to a typical
multiset that is obtained from real, biological, data is very likely to be one.

Remark - The lengths of DNA fragments are measured with error. Further-
more, it is often not possible to detect how many fragments are of a given length.
Thus, in general, the multiset of lengths is fraught with errors in measurement and
with loss of multiplicity information. We do not consider these two complicating
factors. However, we should note that under such circumstances the number of so-
lutions to a given set of measured lengths will behave differently than under the
assumption of exact measurements.

7.1 The Multiset-Addition Problem

The PPD Mapping Problem can easily be stated as a multiset-addition
problem. The clone is represented by an interval on the real line, and the integers
along this line represent the nucleotide positions. The probe hybridizes at zero
and the restriction enzyme cut sites are represented as a set, C, of integers. Let
Y ′ = {c : c ∈ C, c ≥ 0} and let X ′ = {|c| : c ∈ C, c < 0}. The result of the partial
digestion experiment is the multiset S ′ = X ′ + Y ′. The task of the biologist is to
find sets of nonnegative integers, X ′ and Y ′, from S′.

Notice that the results of the experiment would not be different if the probe
were anywhere in the interval [−minX ′,minY ′]. Equivalently, for any integer p in
the interval [−minX ′,minY ′], the pair {{x + p : x ∈ X ′}, {y − p : y ∈ Y ′}} would
also be a solution to S ′. These solutions are called congruent. We wish to count
each group of congruent solutions exactly once.

The number of integers in [−minX ′,minY ′] and, hence, the number of
pairs in a congruency class is 1 + minS ′. In particular, if minS ′ were zero there
would be only one solution pair {X ′, Y ′} per congruency class. With that in mind,
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Probe

c1 c2 . . . ci . . . ck . . . cp 0 cp+1 . . . cj . . . cl . . . cq

Figure 7.1: Linear Order of the Cutting Sites and the Probe

we define S = {s − minS ′ : s ∈ S′}. S is a multiset with exactly one zero. The
solutions {X ′, Y ′} for S′ map (1 + minS ′)-to-1 to the solutions {X,Y } for S. The
mapping is:

X ′ −→ X = {x−minX ′ : x ∈ X ′}
Y ′ −→ Y = {y −minY ′ : y ∈ Y ′}

Counting all the solutions for S is the same as counting congruency classes of solutions
for S′. Hence, the number of unordered pairs {X,Y } which solve S is the number of
noncongruent solutions to the PPD Mapping Problem.

Thus, we have transformed the PPD Mapping Problem to the multiset-
addition problem stated earlier.

7.2 Mixed Radix Representation

Our lower bound on the number of solutions to the multiset-addition prob-
lem uses a mixed radix representation of the integers. This is a generalization of
the decimal representation, which goes back to 1869, when it was first obtained by
Cantor [Can69]. For completeness, we describe it in this section.

Lemma 7.1 Let N be a positive integer and fix a tuple of positive integers

(n1, n2, . . . , n`)

such that
∏`

i=1 ni = N . Let N1 = 1 and for 1 < j ≤ ` define Nj =
∏j−1

i=1 ni. Any
integer x ∈ {0, . . . , N − 1} can be written uniquely as

x =
∑̀

i=1

aiNi
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where we require ai ∈ {0, . . . , ni − 1}. Furthermore, if x /∈ {0, . . . , N − 1} then it
cannot be written in this way.

For a given integer x, we say that the tuple (a1, . . . , a`) is its represen-
tation in the basis which is defined by the tuple (n1, . . . , n`). Notice that the
representation of x depends not only on the values {n1, . . . , n`} but also on their
order.

Proof: The proof is by induction on `, the number of factors.

Base case ` = 1: Obvious.

Inductive Step ` > 1: Assume the theorem is true for fewer than ` factors. First,
we show the existence of a representation for x ∈ {0, . . . , N − 1}. Let a` = b x

N`
c and

let x` = x mod N`. We have that x = a`N` + x`. Furthermore, since x` < N` and
since N` =

∏`−1
i=1 ni is the product of ` − 1 factors the induction hypothesis gives a

representation

x` =
`−1
∑

i=1

aiNi.

Thus,

x =
∑̀

i=1

aiNi.

Uniqueness also follows from the induction hypothesis applied to N` =
∏`−1

i=1 ni. The only integers that can be represented by
∑`−1

i=1 aiNi are those in
{0, . . . , N` − 1}. Thus, if we chose a` to be anything other than b x

N`
c it would

be impossible to write x =
∑`

i=1 aiNi. For i < `, ai is unique by the induction
hypothesis applied to x` in the N` =

∏`−1
i=1 ni basis.

Lastly, we must show that if x /∈ {0, . . . , N−1} then it cannot be represented
as above. This follows immediately from the fact that a`N` ∈ {0, N`, 2N`, . . . , (n` −
1)N`} and by the induction hypothesis that

∑`−1
i=1 aiNi ∈ {0, . . . , N` − 1}.

7.3 Decomposing {0, . . . , N − 1}
For any N > 0 consider the multiset SN = {0, . . . , N − 1}. We will show

that

lim sup
N→∞

#ppd(SN )

N t
=∞

for all t < ζ−1(2).
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For each ordered factoring
∏`

i=1 ni of N into positive integers we can con-
struct sets X and Y satisfying X + Y = SN . Let Nj =

∏j−1
i=1 ni as before. Define X

to be all those integers x that can be written as

x =
∑

i

a2i+1N2i+1

where, as before, a2i+1 ∈ {0, . . . , n2i+1 − 1}. That is, X is all those integers whose
representation has zeros for the a’s with even subscripts.

Similarly, define Y to be all those integers y that can be written as

y =
∑

i

a2iN2i

where a2i ∈ {0, . . . , n2i − 1}.

Lemma 7.2 For every element s ∈ SN there is a unique x ∈ X and a unique y ∈ Y
such that s = x+y. For any s /∈ SN there is no x ∈ X and y ∈ Y such that s = x+y.
That is, SN = X + Y .

Proof: Let s ∈ SN . Let (a1, . . . , a`) be the representation for s in the mixed radix
basis (n1, . . . , n`). Define:

x =
∑

i

a2i+1N2i+1

y =
∑

i

a2iN2i.

Then x ∈ X, y ∈ Y , and s = x+ y. If s = x+ y for a different x ∈ X or y ∈ Y then
there would be a another representation (a1, . . . , a`) for s. However, by Lemma 7.1
the representation for s is unique. Thus, these are the only x ∈ X and y ∈ Y
satisfying s = x+ y.

Lemma 7.1 also implies that any s /∈ SN cannot be written as the sum of
an x ∈ X and a y ∈ Y .

We wish to show that there are many unordered pairs {X,Y } such that
SN = X+Y . In Lemma 7.3 we show that every ordered factoring of N into integers,
where each integer is greater than one, gives a unique unordered pair {X,Y }.

Lemma 7.3 Let N > 1 be an integer. Let
∏`

i=1 ni and
∏`′

i=1 n
′
i be distinct ordered

factorings of N into integers, where each integer is greater than one. Let X and Y be
the sets constructed from the first factoring and let X ′ and Y ′ be the sets constructed
from the second factoring. We have that

{X,Y } 6= {X ′, Y ′}.
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Proof: It is sufficient to prove X 6= Y ′ and X 6= X ′. Observe that n1 > 1 implies
that 1 ∈ X. It is represented by the tuple (a1 = 1, a2 = 0, . . . , a` = 0). Also, n′1 > 1
implies that 1 /∈ Y ′ because 1 is represented by the tuple (a′1 = 1, a′2 = 0, . . . , a′`′ = 0).
Thus X 6= Y ′.

Let m be the smallest positive integer for which nm 6= n′m. Without loss
of generality assume that n′m > nm. Since

∏`
i=1 ni =

∏`′

i=1 n
′
i, we have that m is

strictly less than `.
The integer z represented by the tuple

(a1 = 0, . . . , am = 0, am+1 = 1, am+2 = 0, . . . , a` = 0)

in the first basis is represented by the tuple

(a′1 = 0, . . . , a′m−1 = 0, a′m = nm, a
′
m+1 = 0, . . . , a′` = 0)

in the second basis. If m is odd then z ∈ X ′ but z /∈ X. If m is even then z ∈ X but
z /∈ X ′. Thus, in either case, X 6= X ′.

Define H(N) to be the number of ways to factor N into the product of
integers, each greater than one, where the order of factors is significant. The above
discussion indicates that

#PPD(N) ≥ #ppd(SN ) ≥ H(N).

7.4 Hille’s Result

In [Hil36] it is shown that

lim sup
N→∞

H(N)

N t
=∞

for all t < ζ−1(2). The value is not infinite for all t ≥ ζ−1(2). This proves the result:

Theorem 7.1 For any multiset S containing exactly one zero, let #ppd(S) be the
number of unordered pairs {X,Y } of sets such that X + Y = S. Let #PPD(N) =
sup{#ppd(S) : S is a multiset of size N containing exactly one zero}. We have that

lim sup
N→∞

#PPD(N)

N t
=∞

for all t < ζ−1(2) where ζ(t) is the Riemann Zeta Function and ζ−1(2) ≈ 1.7286472390.

Corollary 7.1 For worst case data sets, the Probed Partial Digest Mapping Problem
with an input of N fragment lengths will have Ω(N t) solutions for any t < ζ−1(2).
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7.5 Examples

For every value of t < ζ−1(2) there must exist an infinite sequence {N1, N2, . . .}
satisfying

lim
i→∞

#ppd(SNi)

N t
i

=∞.

We do not have an algorithm to construct such a sequence for arbitrary values of t.
However, we can construct some sequences {N1, N2, . . .} for which the sequence

{#ppd(SN1),#ppd(SN2), . . .}

grows quickly.

Lemma 7.4 For Ni = 2i, H(Ni) = Ni/2 = 2i−1.

Proof: This is shown in [Nao90]. The proof is by induction on i.
Base case i = 1: N1 = 2 has only one ordered factoring into factors greater than
one.
Inductive Step i > 1: Assume the theorem is true for values less than i. There is
one ordered factoring of Ni with just one factor. For factorings of Ni into two or
more factors the first factor must be in {21, 22, . . . , 2i−1}. If the first factor is 2j the
product of the remaining factors will be 2i−j . The number of ordered factorings of
2i−j is 2i−j−1 by the induction hypothesis. H(2i) is the sum, over every choice of a
first factor, of the number of ways to factor the rest. Thus,

H(2i) = 1 +
i−1
∑

j=1

H(2i−j) = 1 +
i−1
∑

j=1

2i−j−1 = 2i−1.

Lemma 7.5 For Ni = 3 · 2i, H(Ni) =
Ni lg(4Ni/3)

6 = (i+ 2)2i−1.

Proof: Proof by induction on i.
Base case i = 0: N0 = 3 has only one ordered factoring into factors greater than
one.
Inductive Step i > 1: Assume the theorem is true for values less than i. The first
factor of Ni is either Ni, an element of {3 · 20, . . . , 3 · 2j , . . . , 3 · 2i−1}, or an element
of {21, . . . , 2k, . . . , 2i}. Thus,

H(3 · 2i) = 1 +
i−1
∑

j=0

H(
Ni

3 · 2j ) +
i
∑

k=1

H(
Ni

2k
)
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= 1 +
i−1
∑

j=0

H(2i−j) +
i
∑

k=1

H(3 · 2i−k)

= 1 +
i−1
∑

j=0

2i−j−1 +
i
∑

k=1

((i− k) + 2)2i−k−1

= 1 +
i−1
∑

`=0

2` +
i−1
∑

`=0

`2`−1 +
i−1
∑

`=0

2`

= 1 + (2i − 1) + (i2i−1 − 2i + 1) + (2i − 1)

= (i+ 2)2i−1

Lemma 7.6 For any t satisfying 6t

2 − 3t − 2t + 1 < 0 (i.e., t < 1.4352791) there
exists infinitely many values of N of the form N = 2i · 3j satisfying H(N) = Ω(N t).

Proof: For convenience, define H(1) = 1. When N > 1, we have

2H(N) =
∑

d|N
H(d).

There is a factor of two on the left-hand side because H(N) is included on the right-
hand side. When N = 1, we have 2H(N) − 1 =

∑

d|N H(d). Define generating
functions

G(s) =
∑

N=2m·3n,
m,n≥0

H(N)

N s

Z(s) =
∑

N=2m·3n,
m,n≥0

1

N s

The first equations imply the formal identity, 2G(s) − 1/1s = G(s)Z(s),
which implies

G(s) =
1

2− Z(s) .

This formula implies that the sum defining G(s) must diverge when s satisfies Z(s) =
2. Now Z(s) = (

∑

m≥0 1/2
ms)(

∑

n≥0 1/3
ns), thus Z(s) = 2 when 6s

2 −3s−2s+1 = 0.
If H(N) were O(N t) for some t < s then the definition of G(·) would imply that
G(s) converges. Thus, H(N) is not O(N t) for any t < Z−1(2).

Note that in the above, G(t) and Z(t) are defined as a sum over all values
of N whose prime factorization includes only the first two primes. If instead we use
those N whose prime factorization includes only the first k primes we get a tighter
lower bound to H(N). If we let k →∞ we find that we have rederived Hille’s result.
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