The K-Server Problem with Distinguishable Servers

Lee Newberg?

May 23, 1991

!Supported by a National Science Foundation Graduate Fellowship.

Abstract

This report gives a survey of existing results in the field of on-line k-server algorithms and presents some
new findings. The survey includes optimal on-line algorithms for k servers on a line or a tree, an optimal
on-line algorithm for 2 servers in any metric space, and an optimal on-line algorithm for n — 1 servers in
a metric space with n points.

The first part of the newer material pertains to the traditional k-server problem. The equivalence of
the Tree and Line Potential Functions is discussed. An algorithm is given that works in any finite metric
space with a competitiveness that is independent of the distances between the points.

The second part of the newer material discusses a variation of the k-server problem in which the servers
have different costs. In this model each server pays a cost proportional to the distance it moves but the
constant of proportionality may vary from server to server. Upper and lower bounds on the competitiveness
are given for the k-server problem on a uniform metric space and for the general 2-server problem.

Contents

1 Introduction

-

Equal Costs
2 Minimum Competitiveness
3 Uniform Metric Spaces

4 Lines and Trees
4.1 The Potential Function.
4.2 kServersonaLine
4.3 kServersona Tree
4.4 The Equivalence of the Tree and
Line Potential Functions
4.5 Two Servers in Any Metric Space . .

5 Finite Metric Spaces
5.1 n-1 Servers in a Space of Size n . . .
5.2k Servers in a Space of Size n
II Distinguishable Costs
6 Obvious Bounds

7 Uniform Metric Spaces

8 Two Servers
8.1 Two Serverson a Line
8.2 Varying the Speeds
8.3 Two Servers in Any Metric Space . .

9 Finite Metric Spaces

IIT Summary
10 Future Work
11 Glossary

12 References

15
15
18
19
20

22

22
22
25
27

27

28

28

28

30

1 Introduction

This report discusses results in the field of on-line
k-server algorithms.! An on-line problem is one in
which an algorithm must handle a sequence of re-
quests, satisfying each request without knowledge
of the future requests. The goal is to minimize the
cost associated with serving the request sequence.
An algorithm for deciding where to place files on
a disk is an example of an on-line algorithm. A
memory manager that must decide which pages of
information to put in memory is another example.

Another on-line problem involves the use of k
mobile servers in a metric space.? In this case,
each request is a location. To serve a request, the
algorithm must move one of the k servers from its
current location to the requested site. The cost as-
sociated with the request is the distance the server
moves. This is known as the k-server problem.

The memory manager problem is an example of
the k-server problem. In this case the servers are
blocks of physical memory and the requests are
for pages of virtual memory. Moving a server from
one page to another corresponds to removing the
first page from memory and replacing it with the
requested page. The distance between two pages
corresponds to the cost of such an operation. In
this case the cost is independent of the two pages
involved so the distance between any two points in
the metric space is a constant.

In the traditional k-server problem the servers
are indistinguishable. The cost of satisfying a re-
quest is a function of where the server is moving
from and where it is moving to, but not which
server it is. When this report discusses the k-server
problem that is what it will mean.

However, there is no reason the k servers must
be indistinguishable. It is possible, for instance,
that the memory manager may control more than
one kind of physical memory. Even in a non-
hierarchical memory it may be responsible for
managing both fast SRAM memory and slower
DRAM memory. In this case the cost of replac-
ing a page depends on the server (i.e. block of
physical memory). A problem of this type will

1The word algorithm as used in this report means de-
terministic algorithm.
2Ttalicized words appear in the glossary

be an instance of the k-distinguishable-server prob-
lem. This paper discusses both the traditional k-
server problem and the newer k-distinguishable-
server problem.

Research in the field of on-line k-server algo-
rithms involves finding good algorithms and prov-
ing the existence or non-existence of these good
algorithms. Two basic concepts that allow us to
talk sensibly about the performance of an on-line
algorithm are optimal and competitive.

For any given sequence of requests there will be
algorithms which achieve the least cost when serv-
ing that sequence. An algorithm OPT is called
optimal if for every other algorithm ALG and ev-
ery sequence o the cost for OPT on o is less than
or equal to the cost of ALG on o. An algorithm
is called competitive if its performance on any se-
quence of requests is within a constant factor of the
performance of an optimal algorithm on that se-
quence of requests. An algorithm is c-competitive if
that constant is c¢. The lower the value of the com-
petitive ratio, ¢, the more competitive an algorithm
is. An optimal algorithm is itself 1-competitive.

An optimal on-line algorithm is one which
achieves the best competitive ratio among all on-
line algorithms. For most interesting problems, the
optimal algorithms are not on-line algorithms. It
is usually necessary to know the entire sequence of
future requests in order to compute a best way to
satisfy the current request. In such cases the opti-
mal on-line algorithms are not optimal among all
algorithms. For instance, it is shown in [MMS88]
that the best on-line solutions to the k-server prob-
lem cannot be better than k-competitive. This
proof is given in Section 2. An adaptation of
the proof to the k-distinguishable-server problem
is given in Section 6.

There are two main parts to this paper. Part I
covers k-server problems where the cost to move
a server is independent of the server. Part I is
predominantly a survey of existing results for the
on-line k-server problem and serves as an introduc-
tion to Part II.

Section 3 discusses the k-server problem on uni-
form metric spaces. A uniform metric space is one
in which the distance between any two points is
unity.

Section 4.2 covers the algorithm presented in

[CKPVI0] for k servers on a line. We give the
algorithm for k servers on a tree from [CL89a] in
Section 4.3. To analyze their algorithms both pa-
pers use potential functions which we describe in
Section 4.1. Although the potential functions used
in the two papers appear different they are in fact
equivalent. This is explained in Section 4.4.

Next in the survey of previously solved problems
is the general algorithm from [CL89b] for 2 serv-
ers in any space. Our slightly simplified version
of their proof is presented in Section 4.5. The po-
tential function used in the proofs is the same as
that used for the proofs for the line space and tree
space. The rough equivalence of these three prob-
lems is exploited in Part II when the spaces are
revisited in the context of the k-distinguishable-
server problem.

The survey ends with a presentation of an opti-
mal on-line algorithm for n — 1 servers in a space
with n points. The algorithm is from [MMS88]
though the proof is new. This is in Section 5.1.

Part I is not all introduction, however. Sec-
tion 5.2 presents a new competitive algorithm for
the k-server problem on a finite space. The al-
gorithm is a generalization of the (n — 1)-server
algorithm given in Section 5.1. The competitive
p) !
where n is the number of points in the space and
k is the number of servers.

The algorithm and supporting proofs show a
strong similarity to those for solving metrical task
systems given in [BLS87] although the results were
discovered independently.

ratio for the algorithm is shown to be (

Part II covers k servers with different costs.
Each of the results from Part I is revisited but the
possibility of servers with distinguishable costs is
considered.

The algorithms that perform well when the serv-
ers are indistinguishable also perform well when
the servers are distinguishable. With almost no
modification to the original proofs we can prove a
respectable competitive ratio for these algorithms.
A striking result is that we can prove better com-
petitive ratios for these algorithms by modifying
the potential functions employed. These better
competitive ratios are achieved without modifying
the behavior of the algorithms.

Part 1
Equal Costs

2 Minimum Competitiveness

There is an excellent proof presented in [MMS88]
that shows that an on-line algorithm for the k-
server algorithm on a space with at least k + 1
points cannot be better than k-competitive. How-
ever, before proving this lower bound on competi-
tiveness we’ll need some definitions and a few ob-
servations.

Let ALG be an algorithm and suppose there is
a request to a location x. We call ALG’s response
to the request reasonable if either

1. ALG already has a server at z and does not
move any of its servers, or

2. ALG does not have a server at x and moves
one server to that location, but does not move
any of its other servers.

We call ALG reasonable if every response it makes
is reasonable. In general, an algorithm must al-
ways move a server to a requested location if it
does not have one there already, but it might also
move other servers to other locations if it so de-
sired.

Notice that any algorithm can be easily modi-
fied to be a reasonable algorithm without raising
its competitive ratio. In response to a request,
the modified algorithm would still move the server
that is moving reasonably. However, rather than
moving the servers that aren’t moving to the re-
quested location, the modified algorithm can sim-
ply remember that it wanted to move them. The
current request will still be served so no harm is
done in the short run.

When it becomes reasonable to move a server
then the algorithm can trace out all the remem-
bered movements for that server. This modified
algorithm does exactly as much work as the origi-
nal algorithm except that it delays it until the work
is reasonable. After any given request the modified
algorithm has done no more work than the original
algorithm so its competitive ratio must be at least
as good. In fact, there is no reason for a server

to trace out the entire path of saved movements.
It can go straight to the requested location. This
will be no more expensive than following the saved
path because of the triangle inequality.

Thus, every algorithm can be converted to a
reasonable algorithm without increasing its cost.
Therefore, when minimizing a cost over all algo-
rithms it is sufficient to minimize over only those
algorithms that are reasonable.

In addition to assumptions about an algorithm’s
reasonableness, we may want to modify what ini-
tial conditions it assumes. When comparing two
algorithms it is natural to assume that both have
to start with their servers in the same places so
that neither has an unfair advantage over the
other. A close examination of the definition of the
competitive ratio shows that this assumption is not
necessary.

If an algorithm wishes to start with its servers
in a configuration other than that dictated in the
statement of the problem, it can simply move its
servers into the desired configuration before sat-
isfying the first request. This extra moving will
incur a cost but the cost is a constant independent
of the request sequence. Therefore the cost can be
hidden in the additive constant, a, present in the
definition of c-competitiveness. Thus an algorithm
that gets to start in a configuration of its choosing
has a competitive ratio no better than the equiv-
alent algorithm that must start in the specified
starting configuration.

We need some notation for handling sequences
of requests. This report will use o to indicate a
sequence of requests. o; will mean the first ¢ re-
quests of the sequence o. Contrastingly, the sym-
bol (i) will be used to indicate the ith request
of a sequence 0. Carg(o;) will be used to mean
the total cost incurred by an algorithm ALG for
servicing the first i requests of a sequence o. Sim-
ilarly, Copr() will be used to mean the cost for an
optimal algorithm.

We need one more idea before we can embark on
the proof that on-line algorithms for the k-server
problem cannot be better than k-competitive. We
need to introduce the important concept of an ad-
versary. An algorithm, ALG, will have a com-
petitive ratio of ¢ if there exists a constant, a,
such that for every sequence of requests, o, we

have that Capg(o) < ¢Copr(o) + a. Note that
although there may be some sequences for which
ALG performs cheaply, the competitive ratio will
be bounded from below by the sequences which
cause ALG to perform the worst.

We can imagine that there is an adversary that
chooses a sequence of requests to demonstrate the
worst performance of an on-line algorithm. The
adversary will have its own copy of the servers and
will show how to serve the sequence of requests
more efficiently than the on-line algorithm does.
Thus, proving that the competitive ratio of an on-
line algorithm is ¢ is equivalent to proving that the
algorithm achieves a competitive ratio of ¢ even
against its worst adversary. This viewpoint will
prove extremely useful in many proofs.

Note that the on-line algorithm cannot see
where the adversary’s servers are or how they
move. They are imaginary and exist only to those
reading the proofs.

We are now prepared to prove the theorem from
[MMSS8S].

Theorem 1 Let ALG be an on-line k-server algo-
rithm for a metric space with at least k+ 1 points.
Then, the competitive ratio of ALG is at least k.

Proof: From observations made previously we
know that we can assume that ALG is reasonable.
Furthermore we can assume that its k servers start
in different places. Choose a subspace of our met-
ric space with those k positions plus one more,
chosen arbitrarily. These k 4 1 positions will be a
sufficiently big space to prove the theorem. Label
the locations by the numbers 1,...,k + 1 and let
d;; stand for the distance between location ¢ and
location j.

We will prove the theorem by showing that there
is an adversary who can choose a sequence of re-
quests that will cost ALG at least k times as much
as an optimal algorithm. The adversary’s choice is
quite easy. At each step, the adversary requests a
move to the location not covered by one of ALG’s
servers.

The cost for ALG on such a sequence is given
by:

Carc(on) = Z do(it1)o(i)
i1

We know that the adversary will choose the (i +
1)st request to be the location vacated by ALG as
it served the ith request. Therefore we know that
ALG’s ith move was from o(i+1) to o(¢) and that
ALG paid dg(i41)0(;) for this move. Hence, we get
the above formula.

To show that ALG cannot be better than k-
competitive we must show that there is an algo-
rithm that can serve the sequence o, for 1/kth
the cost. To do this we shall demonstrate k al-
gorithms and show that at least one of them will
incur a cost of no more than

1
—Carg(on)

k
when serving o,,.

The k algorithms will behave the same and will
only differ in where they start their servers. There
k+1

k
positions for servers from the k + 1 available loca-
tions. Of these, k will have a server on o(1). These
k possibilities will be the starting positions for the
k algorithms we are constructing.

If an adversary already has a server at the re-
quested location then the adversary will do noth-
ing. If the request, o(n), is not occupied by one
of the adversary’s servers, the adversary will move
the server currently located at o(n — 1).

Note that after a request, o(n), each of the k al-
gorithms will have a different configuration of serv-
ers. That is, the set of locations occupied by serv-
ers will be different for each of the k algorithms.
To see this, notice that it is true before the first
request.

For the purpose of induction, assume that is true
up through the request o(n — 1). Let’s compare
two of the algorithms. Before the request to o(n)
they have different server configurations. If they
both have servers at location o(n) then neither will
move any servers to satisfy the nth request. There-
fore they will have distinct configurations after the
nth request. Similarly, if neither algorithm has a
server at o(n) then both will move the server cur-
rently at o(n — 1). Hence their server configura-
tions will remain distinct.

Suppose one of the algorithms has a server at
o(n) but the other does not. Since both algorithms

are () = k + 1 ways to choose k starting

just served a request at o(n — 1) they both have
a server there. To satisfy the request to o(n) ex-
actly one of the algorithms will move a server from
o(n —1). The other will leave a server at that lo-
cation. Therefore the server configurations will be
different.

We're trying to show that one of these k algo-
rithms will run cheaply. To demonstrate this let’s
add up the total cost we’d have to pay if we ran
all k algorithms simultaneously. There is no cost
to serve the first request since all k£ algorithms al-
ready have a server at o(1).

After n—1 requests each of the k algorithms will
have a server at o(n—1). Since each algorithm has
its servers in a different configuration and since no
algorithm will ever have two servers at the same
location, we know exactly what configurations of
servers the algorithms will have. All but one of
the algorithms will already have a server at o(n).
The algorithm that must move will incur a cost
of dy(n—1)o(n)- Thus the total cost to run all k
algorithms on the sequence o, is

Z do(i—1)o (i)
1=2

Since d;; = d;; this is the same cost incurred by
ALG except for the absence of one term. Since the
sum of the costs of the k algorithms is not more
than Car,g (o) it must be true that at least one of
the algorithms costs no more than Carc(on)/k.

We have just shown that there exists a sequence
of requests, o,,, such that the cost for ALG on that
sequence is at least k times the cost of another al-
gorithm. Therefore ALG must be at least k times
more expensive than an optimal algorithm and
hence cannot have a competitive ratio less than
k. m

Notice that this proof does not use the trian-
gle inequality. Hence the theorem holds for any
“space” M even if the distance function does not
satisfy the triangle inequality.

At this time we are not aware of any results
proving a better lower bound for the competitive
ratio that is applicable to all metric spaces. To
the best of our knowledge, even if attention is re-
stricted to algorithms for servers in a specific met-
ric space no better lower bound is known.

3 Uniform Metric Spaces

There are some metric spaces on which the &-
server problem can be solved by an on-line algo-
rithm which is k-competitive. These include uni-
form metric spaces, lines, and trees. There is a
k-competitive algorithm for the k-server problem
in a space with k& 4+ 1 points. Additionally, there
is an algorithm which is 2-competitive for the 2-
server problem that works in any metric space.

However, for many instances of the k-server
problem there is no known k-competitive on-line
algorithm. At this time there is no k-competitive
algorithm for the k-server problem in a general
metric space when k£ > 2. Until 1990 there weren’t
any known competitive algorithms for general met-
ric spaces when k > 3. Competitive algorithms are
now known (see [FRR90] and [G91]) though the
competitive ratios are exponential in k.

One class of spaces in which optimal on-line al-
gorithms are known is the set of uniform metric
spaces. A uniform metric space is a space in which
the distance between any two distinct points is
1. There are several optimal on-line algorithms
for these spaces. For instance, see [CKPV90] and
[CL89a].

One algorithm which is particularly simple is
called the LRU (for least recently used) algorithm.
If a request is made to a point already covered by
a server then LRU does nothing. Otherwise LRU
moves the least recently moved server.

Theorem 2 LRU is k-competitive.

Proof: Without loss of generality we will as-
sume that the adversary never requests a point in
which one of LRU’s servers is located. We will also
assume that the adversary is reasonable.

The cost to run LRU is given by

Crru(on) =n

since each move costs exactly 1. In particular,
LRU will pay k£ in any run of k consecutive re-
quests. We will show that an adversary must pay
at least 1 in any run of k£ consecutive requests ex-
cept possibly the very first run. This implies that
LRU is k-competitive.

Consider the k requests o(n +1),...,0(n + k)
when n > 1. For the purposes of contradiction

suppose that the adversary incurs no cost during
the run. Since LRU has k servers and always
moves the least recently moved server we know
that LRU will move each of its servers exactly once
during this run. Furthermore, because the adver-
sary always requests a location in which we have no
server, we know that every request will be distinct
from the the k requests preceding it. We can con-
clude that no two of the requests o(n),...,o(n+k)
will be to the same location because each must be
different from those that precede it.

Since both the adversary and LRU are reason-
able we know that after the request to o(n) they
will each have a server at that location. Since the
adversary serves the entire run of requests for free,
it must also have servers at the k requested sites
o(n+1),...,0(n+ k). Therefore the adversary
must have servers at k + 1 distinct locations.

Since the adversary has only k servers we have
established a contradiction. Thus we have shown
that the adversary must pay more than nothing
and therefore at least 1 during any run of k re-
quests. Hence LRU is k-competitive. ®

4 Lines and Trees

Optimal on-line algorithms are known for the -
server problem when the metric space is a line or
a tree. The line and tree problems are quite similar
and are similar to the general 2-server problem as
well. In the following sections we demonstrate the
similarities and present optimal on-line algorithms.

4.1 The Potential Function

For the proofs of the competitiveness of the al-
gorithms for the line and the tree problems we
will use a new tool. We will use a potential func-
tion to prove how competitive our algorithm is. A
function @ is a potential function demonstrating a
competitive ratio of ¢ for an algorithm ALG if it
satisfies the following conditions:

e ® is nonnegative.

e Every response to a request by the adversary
increases ® by no more than ¢ times the cost
charged to the adversary for that response.

e Every response to a request by ALG decreases
® by at least the cost charged to ALG for that
response.

Generally ® will be a function of the current posi-
tion of all of the adversary’s and all of ALG’s serv-
ers as well as any internal state ALG may wish to
store. When working with potential functions it is
often convenient to assume that the adversary will
move first in response to its own request followed
by ALG’s response to the request.

Suppose we are trying to prove that some algo-
rithm ALG is c-competitive. We can reduce the
task to that of finding a potential function ® sat-
isfying the above conditions.

Theorem 3 Let ALG be an algorithm. If there
exists a potential function ® satisfying the above
constraints for a number ¢ > 0 then ALG is c-
competitive.

Proof: We will show that ALG is c-competitive
by showing that

CALG(O') + (I)(O') < CCAD\/(O') + g

for any sequence o and adversary ADV. We use
®(to indicate the value of the potential function
before any moves are made by ALG or ADV. The
value of ® after ALG and ADV have satisfied the
sequence o is denoted by ® (o). Since ®(c) > 0 for
all o a proof of this inequality proves that ALG is
c-competitive.

The proof that the above inequality holds will be
by induction on the length of the sequence o. Note
that the inequality holds trivially when o is of zero
length. Suppose that we know that the inequality
holds for all sequences of length less than n. Let
on be a sequence of n requests and let o,,_1 be the
first n — 1 requests of o,,.

The induction hypothesis gives us that for any
adversary ADV

CarLc(on—1) + ®(0n—1) < cCapv(on_1) + Po.

By the definition of a potential function we are
guaranteed that

AP < cACrpv — ACrLc

where

ACaLc Carc(on) — Carc(on-1)
ACapv Capv(on) — Capv(on-1)
AP = ®(o,) — P(0n_1)

Thus, it follows that

Carc(on) + ®(0,) < cCapv(on) + Po.

4.2 k Servers on a Line

The DOUBLE_COVERAGE algorithm described
in [CKPV90] is an optimal on-line algorithm for
the k-server problem on the line. In response to
a request at a location not covered by one of the
algorithm’s servers it will move one or two serv-
ers. If all DOUBLE_COVERAGE’s servers are on
one side of the request then it will move a near-
est server to the requested location. If the request
falls between two servers then a closest neighbor
on each side of the request is moved. These two
servers are moved towards the request by the dis-
tance of the closer server.

The DOUBLE_COVERAGE algorithm for &
servers is k-competitive. We will present the proof
given in [CKPV90]. The proof is, essentially, giv-
ing a function ® and showing that it satisfies the
definition of a potential function for the algorithm
and a competitive ratio of k.

Theorem 4 DOUBLE_COVERAGE with k serv-
ers is k-competitive.

Proof: Let ay,...,ar be the adversary’s serv-
ers and let sq,...,s; be our (i.e DOUBLE_COV-
ERAGE’s) servers. We will also use a; or s; to
represent the location of a server on the real line.
By relabeling the servers when necessary we can
ensure that s1 < ... <spand a; <...<ay.

Define a potential function ¢ by

®=v+0

where

\I':kZ|ai—si|

and
0= Z |si — s,
i<j
Since each term of ® is nonnegative, & can never
be negative.

We must check that any moves by the adversary
or by us in response to a request change the po-
tential function correctly. We will assume that the
adversary is reasonable. For the purposes of the
analysis we will break up each move into phases.
A phase of our movement ends when we move a
server past another of our servers or a server be-
longing to the adversary. A phase of the adver-
sary’s movement ends when it moves a server past
one of its own servers or one of our servers. At the
start of any of these phases we may need to relabel
the servers to ensure the preservation of the order-
ings 51 < ... < si and a; < ... < ai during the
phase but this won’t change the value of ®.

During a phase of the adversary’s movement, the
adversary may move the server a; by a distance d
incurring a cost d. If the move is towards s; then
U will decrease by kd. If the move is away from s;
then ¥ will increase by kd. In either case AV < kd
and hence A® < kd.

During a phase of a move by DOUBLE_COV-
ERAGE, ® will decrease by at least the cost in-
curred. Consider first the situation where DOU-
BLE_COVERAGE is moving just one server. It
will be either s; or s;. Without loss of general-
ity we will assume that s; is moving to the left
(i.e. in the negative direction) along the real line.
Let d be the distance it moves. Since the adver-
sary has already served the request it has some
server to the left of s;. Therefore a; is to the
left of s;. @ decreases by exactly d, the cost
incurred by DOUBLE_COVERAGE, because ¥’s
value will decrease by kd and ©’s value will in-
crease by (k — 1)d.

Lastly, we must consider a phase of a move
by DOUBLE_COVERAGE in which it is moving
two servers towards the request and towards each
other. Suppose the two servers moving are s; and
s;+1 and that a; is a server belonging to the ad-
versary at the requested location. If j < ¢ then
s; which is moving towards a; is also moving to-
wards a;. In this case ¥ will not increase because
any increase caused by the movement of s;; will

be canceled by the movement of s;. If j > ¢ +1
then the roles of s; and s;41 are reversed and we
still have that ¥ does not increase.

We are left to show that © will decrease by
enough to pay for the movement of the two servers.
The terms that do not involve s; or s;11 will not
change. Since every server s; when j # 4,9+ 1 is
either to the left of both moving servers or to the
right of both moving servers we have that one of
the moving servers is moving towards s; and the
other away. Hence the sum |s; — s;| + |s; — si11]
remains constant during the phase. The only term
in © we have not yet accounted for is |s; — $;41]-
This term will decrease by exactly the cost of the
movement during the phase. ®

Roughly speaking, ¥ is used to increase the po-
tential function when the adversary moves and O is
used to decrease the potential function when DOU-
BLE_COVERAGE moves. W is affected when
DOUBLE_COVERAGE moves, though. It is only
the fact that one of our servers is moving towards
the adversary’s server to which it is matched that
prevents ¥ from growing too much. This will be
exploited in other algorithms that we shall see.

4.3 k Servers on a Tree

An algorithm similar to DOUBLE_COVERAGE
works on a tree. A tree metric space is a tree in
the usual graph theoretic sense. Each edge is a line
segment with a length. The points of the metric
space are the points of the line segments including
their endpoints (i.e. the vertices of the graph).

For any two points x and y in the tree we will
use [z, y] to mean the unique simple path from x to
y. In the obvious way we will use [z, y), (z,y], and
(z,y) to indicate the same path but not including
one or both of the endpoints. The distance be-
tween z and y is the length of the path [z,y] and
will be written |z — y|.

The algorithm we will describe comes from
[CL89a]. They call it Algorithm 1. To avoid con-
fusion we will call it TREE. Suppose there is a
request at the location ». The TREE server s; is
called active if [s;, r] contains no servers belonging
to TREE other than the server s; itself. If sev-
eral of TREE’s servers are sitting at a point s and
the interval (s, r] contains no servers belonging to

TREE then exactly one of the servers at s is chosen
arbitrarily to be active.

Notice that we can describe DOUBLE_COVER-
AGE using the active-server terminology. It moves
all of its active servers (i.e. one or two) towards the
request at the same speed until a server reaches the
request. TREE behaves quite similarly. All active
servers are moved at the same speed towards the
request until one of them reaches the requested
location.

There is a somewhat subtle difference between
the line and tree algorithms, though. In DOU-
BLE_COVERAGE once a server is active for a re-
quest it remains active until the request is served.
This is not true for TREE. The movement of the
servers may cause one server to move between an-
other server and the request. This second server
now has a server on its path to the request and
does not remain active. It halts its movement.
Only those servers that are still active will con-
tinue to move.

Notice that any active server is not only mov-
ing towards the request but is also moving towards
every other moving server. This follows from the
fact that the metric space is a tree. Suppose there
is a moving server at s;. Removing the point s;
from the tree separates the tree into at least two
connected components. The server s; is moving to-
wards all servers on the component containing the
request . The only servers that s; is moving away
from are those on the components not containing
r. However, none of these servers will be active
because the path from any of them to r necessar-
ily contains the server s;. This observation will be
useful in the proof that TREE is k-competitive.

As with the line algorithm it will be convenient
to break up the motion of the servers into phases.
A phase ends whenever a server reaches the re-
quest, reaches a vertex of the tree, or reaches any
server belonging to TREE or the adversary. No-
tice that any server that is active during a phase
will be active for the whole phase.

Theorem 5 The TREE algorithm for k servers is
k-competitive.

Proof: As with the proof of the on-line line algo-
rithm for the line we will use a potential function.

Let m be a permutation of the integers 1,..., k.
Define the nonnegative function ® by

o=Vv+0
where
¥ = kmin {Z ‘SZ‘ - aﬂ(i)|}
and
@ = Z ‘SZ — Sj|.
i<j
As in previous arguments si,...,s; are TREE’s

servers and aq,...a; are an adversary’s servers.

Notice that any m that minimizes W can be
thought of as a bipartite minimum-weight perfect
matching between the adversary’s and TREE’s
servers. Thus, this potential function is the same
as the one used in the proof of Theorem 4 except
in that proof we implicitly used 7 (i) = i because
that yields a minimum-weight perfect matching.3

We must show that A® < kd when an adversary
moves with cost d and that A® < —d when TREE
moves with cost d.

First, consider a phase of the adversary’s move.
Assume, for the moment, that we fix the matching
m. As the adversary moves server a; a distance d
incurring a cost d we are guaranteed that ® does
not increase by more than kd. When we allow m
to vary to minimize ¥ we may lower the value of
® but we will not increase it. Therefore A® < kd
for any move by the adversary costing d.

Now let us consider the movement of TREE’s
servers during a phase. Let n be the number of
servers that are active. Suppose each of the active
servers moves a distance d during this phase so
that TREE incurs a total cost of nd. We need to
show that A® < —nd.

Consider © first. Those terms involving only in-

active servers will not change. There will be (g)
terms involving only active servers. Each of these
terms will decrease by 2d during the phase since all
the active servers are moving towards each other.

The remaining terms involve one active server
and one inactive server. Each inactive server s;
has a server between it and the request r. The

3Proof left to the reader.

closest server s, (which was chosen arbitrarily in
the case of ties) to r along this path will be active.
During the phase, s, will be moving towards r and
hence away from s;.

However, all the other n — 1 active servers will
be moving towards the inactive server s;. Let sp
be an active server different from s,. Since s is
active, the active server s, will not be on the path
[sp, 7]. Thus if we remove s, from the tree, s, will
be in the same connected component as r. Since
s; is not in the connected component containing 7,
the unique path [s, s;] necessarily passes through
Sq- Since sp is moving towards s, it is also moving
towards s;.

Thus, since the choice of s, was arbitrary, we
have shown that all but one of the active servers
is moving towards any given inactive server. Since
there are k — n inactive servers the change to ©
due to the terms involving an active server and an
inactive server is (k — n)(1 — (n — 1))d. The total
change in © due to all its terms is therefore

AB = —())2d+ (k—n)(1— (n—1))d,

or more simply,
AO = —[(n —2)k + n]d.

We are trying to prove that A® < —nd for
this phase. Given the bound we have on A©® we
must show that ¥ does not increase by more than
(n — 2)kd. We will assume the 7 chosen at the
beginning of the phase minimizes ® during the en-
tire phase. (As before we have that even if we
had to choose a different 7 to minimize ® later in
the phase this action could only lower ® further.)
In such a situation all the terms of ¥ involving
TREE’s inactive servers do not change.

If at the beginning of the phase a 7 that mini-
mizes ¥ matched an active server with the adver-
sary’s server at the request site then the term for
that active server would decrease by kd. The other
n —1 terms due to active servers would increase ¥
by no more than kd each. Thus, in such a case we
would be able to show that AV < (n—1)kd—kd =
(n — 2)kd. This is the bound we are seeking.

Therefore, to conclude the proof it is sufficient
to show that there is a 7w that minimizes ¥ and

matches the adversary’s server at the request site
to one of TREE’s active servers. Choose a m that
minimizes ¥ and suppose the server s; is not active
and is matched to the server ar(; which is at the
request site. Since s; is inactive and since a(;) is
at the request we know that the path [s;, ar(;)] con-
tains an active server. Suppose this active server
is sp. It is matched to the server a,(x). The fact
that sy is between s; and ar(;) gives

|Si — Skl

ISk — ar@)| = 18 = ar@y| —

The triangle inequality gives
|8i = An(ry)] <180 — k| + sk — an(l-
Together they imply that

ISk — aniy| + 155 = aral

< Isi = ariy| F sk — ar|

Thus switching the matching so that the adver-
sary’s server at the request ar(;) is matched to the
active server s and the adversary’s server at ar ()
is matched to the inactive server s; does not in-
crease V. Therefore this new matching also mini-
mizes W.

The existence of this matching proves that ¥
does not increase by more than (n — 2)kd during
a phase. Together with the known decrease in ©
this shows that the potential function decreases by
at least nd which is the cost that TREE is paying
for the phase.

We have shown that during every phase, and
hence every move by either TREE or the adver-
sary ® changes correctly. Therefore TREE is k-
competitive. ®

4.4 The Equivalence of the Tree and
Line Potential Functions

It is readily apparent that the potential function
for TREE given in this report is equivalent to the
potential function for DOUBLE_COVERAGE as
given here and in [CKPV90]. This is not true of
the potential function for TREE given in [CL89a].
They give a different potential function that looks
as if it is unrelated to the potential function for
DOUBLE_COVERAGE. In this section we will

10

show that the two potential functions for TREE
are equivalent. It will follow that the potential for
the line in [CKPV90] and the potential for the tree
in [CL89a] are equivalent.

The potential function used in [CL89a] is an in-
tegral over the points of the tree. That is,

o — /T ANz) do

where A(x) is a function that will be defined on all
points of T except for a set of measure zero. It
will be piecewise constant as well and hence the
integral will be well defined.

The function A(z) will be defined on the ordi-
nary points of the tree that do not contain a server.
Call a point « in a tree T' an ordinary point if the
set T'— {z} has two connected components. (Oth-
erwise call it a vertez.) For any ordinary point x
not containing a server let 77 and T5 be the two
components of T'— {z}. Let [; be the number of
adversary’s servers in T; and let m; be the number
of TREE’s servers in T;. Without loss of generality
assume that Iy > msy. Define

M) =13 —m3 + 111y,

Although this function @ looks quite different,
it is equivalent to ® as defined in Theorem 5. No-
tice that l1 4+ lo = m1 + mg = k. Therefore,

A= 12—mi+il
= (ll + 12)12 — (m1 -+ mg)mg + mimeo

= k(la —ma) +mimo

The integral ®’ can be broken into two terms in
a suggestive way. Let

(b/ — \II/ + @/
where

\P/:k/(lgfmg) dx
T

and

0 = / mime dx
T

This parallels the definition of ® in Theorem 5 and
it is not hard to see that ¥/ = ¥ and ©’ = O.

We will show why ©' = ©. Counsider an ordinary
point x that does not contain a server. The prod-
uct mymes for that point is the number of TREE’s
servers that are in T times the number in T5. That
is, it is the number of pairs of servers where one
server is in T7 and the other is in T5. This is equal
to the number of pairs of servers {s;,s;} where
x € [s4,5;]. The value of ©’, the integral of m;ms
over T', is thus the sum of the lengths of the paths
[si,s;]. This is the definition of ©!

The case of ¥/ = ¥ is a little more complicated
but quite similar. It is left as an exercise to the
reader.

4.5 Two Servers
Space

in Any Metric

Although the same algorithm for the k-server prob-
lem works on the line and the tree it does not work
on a general metric space when k > 2. To describe
the algorithm in a more general setting we would
need a more general definition of active server. To
make the proof work using the same potential func-
tion we would need three properties that we dis-
covered were true in the case of the tree. First we
would need that every active server is moving to-
wards every other active server. As before, moving
towards each other means that if two servers each
move a distance d then the distance between them
decreases by 2d.

Secondly, we need that at most one active server
is moving away from any given inactive server.

Thirdly, we would need that the adversary’s
server at the request site was matched by a
minimum-weight perfect matching to one of the
active servers which is moving towards it.

When there are at least 3 servers there is no
obvious way to make them satisfy these conditions
simultaneously if the metric space is not a tree.
However the situation is not so bad when k = 2.
In this section we will present a solution for the
2-server problem that works in any metric space.
The algorithm is from [CL89b] though the proof is
a little different. Both the proof from [CL89b] and
the proof about to be presented embed the metric
space in a larger space. However, the space we use
is simpler and allows the omission of parts of their
proof.

11

Intuitively the 2-server algorithm, TWO, is
quite similar to TREE. A server is active if the
other server is not between it and the request. We
will describe between in a moment. In the event
that both servers s; and ss are in the same loca-
tion, one of them is chosen arbitrarily to be the
active one.

For three points z,y, and z in a metric space M
we say that y is between x and z if

|z —yl+ly—z| = |z — 2|

That is, y is between x and z if there is a shortest
path from x to z passing through y. When M is a
tree this definition of active is the same as the one
given in Section 4.3.

For the purpose of describing the algorithm we
will assume that the metric space M has a finite
number of points. This requirement eases the de-
scription of the algorithm but is not necessary. We
will remove it later.

It is convenient to imagine that the servers are
moving around in a metric space which is a su-
perset of the metric space M. Suppose M has n
points {1,...,n}. We will embed M into the space
R™ under the £°° metric.

Let d;; be the distance between the points ¢, j €
M. We can prove that the mapping f : M — R"
with f(z) = (d1g,...,dns) is an isometric embed-
ding. We must show that for all z,y € M

|f(x) = f(W)] = duy-
This is not too difficult. We have that

[f(@) = fyl =

< max {dgy}
i=1,...,n

max {[diz — diy|}
i=1,...,n

= dgy.
We also have that

[f(@) = fy)l =

= day.

‘dww - dmyl

Thus, equality is proven. Henceforth we will abuse
notation and identify M with f(M).

In R"™, any server that wishes to move “just a
little” towards some point will have no trouble do-
ing so. We may not be able to do this if we are

restricted to points in M. Furthermore, unless a
server is between two other points in R™ it can
move a small distance towards both of them si-
multaneously. That is, by moving a distance € it
can get closer to each of the two points by e. It
is these properties that make the TWO algorithm
work in R"™.

We will describe TWO as an algorithm that runs
on R"™ but it is not hard to convert it to an al-
gorithm that runs on M. Converting TWO to a
reasonable algorithm in the usual way does the
trick. Since all requests are to points in M all
movement for the reasonable algorithm will be to
points in M. Therefore when we prove that TWO
is 2-competitive on R" we will have shown that
it’s reasonable version is 2-competitive on M.

The movement for TWO is broken up into two
phases. In the first phase both servers move to-
wards each other and, simultaneously, towards the
request. The phase ends when one server comes
between the other server and the request. In the
second phase the server which is still active moves
to the request. Note that for either phase there are
degenerate cases in which no movement occurs.

A slight modification of Theorem 5 will prove
that TWO is 2-competitive so long as we can show:

1. There exists a minimum-weight perfect bipar-
tite matching that matches the adversary’s
server at the request site to one of TWOQO’s
active servers.

2. At most one active server is moving away from
any given inactive server.

3. All active servers are moving towards each
other and towards the request.

The first is easy. During the first phase both
servers are active so the adversary’s server at the
request site must be matched with an active server
under any matching. An argument similar to that
presented at the end of Theorem 5 shows that dur-
ing the second phase any minimum-weight perfect
matching that does not satisfy the requirement can
be converted to one which does. As was proven
before, the swapping of matched partners will not
change the weight of the matching.

The second item is also easy. During the first
phase there are no inactive servers so the state-

12

ment is true vacuously. During the second phase
there is only one active server so no inactive server
can have more than one active server moving away
from it.

We must consider the third item in each of the
two phases. In the second phase the only active
server is moving towards the request. Since there
are no other active servers it is true, vacuously,
that it is moving towards all of them.

The first phase is harder. We have servers at
$1,82 € IR™ and there is a request at r € R". We
must show that it is possible to move TWO’s two
servers towards each other and towards the request

simultaneously.
Define
1
di = 5 (ls1—7r[+]s1—s2] —|s2 —7])
1
d2 = S (lsz—r[+]s1—saf —[s1—7])
d = min{dhdg}.

Intuitively, d; is the distance that the server at
s1 must move so that it comes between s, and r.
Similarly for ds. Since the first phase terminates
when one of the servers comes between the other
server and the request, d is the distance that both
servers will move during the first phase.

For the server that starts at s; at the beginning
of the first phase use s} to indicate where it has
moved to by the end of the phase. Similarly, use
sh for the location at the end of the first phase of
the server starting at so. To show the truth of the
third item for the first phase of the movement we
demonstrate that it is possible to find s} and s}
such that

[s1—s1] = d
sy —s2| = d
i —rl = |si—r|—d
vl = by vl
|sh —sh| = |s1 — s2| —2d.

Furthermore, we show that either s} is between s}
and 7 or vice-versa.

We compute each coordinate of s} and s} sepa-
rately. For the ith coordinate of s}, written s/ (i),
we choose any real number that satisfies

[51(8) — 51(1)]

< d

|s1 — s2| —

[VARVAN

|s1 — 7| —

These three inequalities define intervals. We must
choose s)(i) from their intersection. The first
two inequalities can be satisfied simultaneously be-
cause |s1(i) — s2(7)|, the distance between the cen-
ters of the intervals, is not more than |s; — s3|,
the sum of the radii. Similarly, the first and third
inequalities can be satisfied simultaneously.

The second and third inequalities can also be
satisfied simultaneously. From the definition of d
we see that

[s2(i) =r(D)] < [s2—r|
= |817T|+|81782|72d1
< |51—T|+|81—82|—2d

Since the first expression is the distance between
the centers of the intervals and the last expression
is the sum of the radii this implies that the two
intervals overlap. Whenever three intervals on the
real line intersect pairwise it follows that the in-
tersection of all three is nonempty.* Thus, we will
be able to choose a value for s/ (7).

Just to be definite® we’ll let s} (i) have the legal
value that is nearest to s1(). Note that any other
value within all three intervals would do just as
well.

In an analogous manner, we choose s5(%) so that
it satisfies

[s5(i) — 2(@)|
|s5(i) —

|s5(i) —

and is closest to s2(i). Notice that we have so
moving towards s} rather than s;. The second and
third inequalities can be satisfied simultaneously
because

d

|s1 — so| —2d

IAINCIA

|82 — 7| —

1)) =r(@)] < [sh =7
< ls1—r[—
= |sog—7|+][s1 — 2| —2d2 — d
< se—r|+ |51 — s2| —3d

4The proof is left for the reader.
5TWO is a deterministic algorithm.

13

The other pairs of inequalities are solvable. Thus,
all inequalities can be satisfied simultaneously.

We must show that s{ and s} satisfy the five
equalities given previously. We have immediately
that

[s] —s1] < d

lsh —so| < d

sy =7 < fsi—r|-

lso —7r] < fs2—7| -

|sh —sh] < |s1—sa| —2d.

and hence for each equality, we need only show
that the left-hand side is greater than or equal to
the right-hand side. Choose a,b and ¢ so that

s1(a) — sa(a)] |s1 — s2
s1(b) =r(D)] = |[s1—7]
Isa(c) =7(c)] = [s2—7].

Using the triangle inequality, we show that s;
and s9 have moved a distance d.

|51 — s
> [si(a) — si(a)|
> s2(a) — si(a)| — [s2(a) — si(a)]
> sz —s1| = (|s2 —s1| = d)
= d.

Similarly,

|55 — 52
> |sh(a) — s2(a)
> [si(a) — s2(a)| — |s1(a) — s1(a)]

= [s1(a) — s3(a)]
> sy —sa] —d—(]s1 — s2| — 2d)
d.

Hence |s| — s1| = d and |s} — 59| = d.
We also get that s; and s, are now closer to r
by d.

|s1 — 7]
> |s1(b) —r(D)|
= s1(b) = r(0)| = [s1(b) — s1(b)]
> |sy—r|—d

Hence |s] —r| = |s1 —r|—d and similarly |s§—r| =
|so — 7| —d.

Next we must prove that the two servers are
moving towards each other. We get immediately
that

1 =55l = [s1—s2| = [s) = s1| —[s — 52
= |51 — 82| — 2d.
Hence, the equality |s] — sh] = |s1 — s2| — 2d is

proved.

The last thing we must check for finite metric
spaces is that one of the two servers comes between
the other and the request. That is, we need either
of:

|55 = sil + st —r| = Isy —r] = 0

|51 —shl sy —r|— sy —r] = 0
We compute both:

|55 = shl +[sh —r[=[5y — 7|
[so —si|—2d+|s1 —r|—d—|sa —7|+d
= 2(dy —d)
|51 — 5| + [sy —r| =[5} — 7]
[s1 —so| —2d+|sa—71|—d—|s1 —7|+d
2(dg — d)

Since d = min{dy,ds}, one of the two expressions
will be zero.

When M has infinitely many points the algo-
rithm needs to be modified slightly. At a point
where only n distinct requests have been made it
is sufficient to embed M into R". As long as re-
quests are made to only these n locations it is as if
M had only n points and hence we can run TWO
in R"™ as before. That is, although the servers
move around in RIM‘, we only keep track of the n
coordinates representing the requested locations.

When a request is made to a new location r, 1 €
M we run the algorithm in R™ ™. To do this we
must locate r,41 in R™. We must also provide
an isometric embedding of R™ into R™ ™ that pre-
serves the first n coordinates.

Fort:=1,...,n we set

Tnt1(i) = |rng1 — 7l

14

For the isometric embedding we define a func-
tion f : R™ — R"™™'. Write f(x)(i) for the ith
coordinate of f(z). Define f by

fl@)(@) = (i)

mac{] [z = 7l = [ras1 = 1] [}

~

—~
8

~—
S
-+

=
|

where 7 ranges from 1 to n in both expressions.

We must check that f is an isometry and that
rn+1 1S the correct distance from the previously
requested locations. First we will prove the isom-
etry. Let 2,y € R"™ be any two points. We will
prove that |f(z) — f(y)| = |z — y|. Now,

|f(z) = f(y)]
= max{|z —y|,|f(@)(n+1)— fly)(n+1)|}

Thus we need to prove that
f@)(n+1) = fy)(n+1) <[z -yl

Let m < n be a coordinate such that r,, is a re-
quest that achieves the maximum in the definition
of f(x)(n+1). That is,

f@n+1) =]l —rnl—|ras1 —rml |.
We get

f@)(n+1) = fly)(n+1)

< e =rm| = rap1 —rml | -
|y = rm| = [rnt1 — rml |

< e —rml =y =l

< eyl

The first inequality is from the definition of f. The
second inequality is the triangle inequality in R.
The last inequality is the triangle inequality in R".
Hence f is an isometric embedding.

As soon as we verify that |r, 11 — ;] is the same
in M and R"*! for all i < n we are done. It is
sufficient to prove that r;(n + 1) = |rp41 — 74l
With this information we will know that for all
1 <i,j <n+1itis true that r;(j) = |r; —r;|. We
have already proven that under such circumstances

the distances between the requests is the same in
M and R™*.

We compute:

rifn+1) = max {[|r; —rj| = |r; =] [}
=z | lri=ril = ri = ragal |
= |’I"i - T7L+1|

To get the other inequality we choose an m < n

such that r,, is a request that maximizes the ex-
pression in the definition of r;(n 4+ 1). It then fol-
lows that

riin+1) =

< |ri = rogal

|'[ri = rm| = |rm — rng1] |

Thus we have proven

Theorem 6 The TWO algorithm for two servers
i any metric space is 2-competitive.

5 Finite Metric Spaces

So far we have seen optimal on-line algorithms for
uniform metric spaces, lines, and trees. We have
also seen an optimal on-line algorithm for 2 serv-
ers in any metric space. These algorithms are all
quite similar. We have already shown how DOU-
BLE_COVERAGE and TWO are like TREE.

LRU, the algorithm for uniform metric spaces,
is also like TREE. A uniform metric space can be
embedded into a tree that looks like an asterisk
with many spokes. Each spoke has length 1/2 and
the points of the uniform metric space are iden-
tified one-to-one with the tips of the spokes. As
measured by paths through the tree the tips of the
spokes are unit distance apart just as in the uni-
form metric space. To run TREE on the uniform
metric space we pretend to run it on the whole
tree we have constructed — not just the tips of
the spokes. We keep track of the location of each
server as if it were in the tree instead of the uni-
form space. Only when a server pretends to move
to the tip of a spoke do we actually move it from
the previous tip that it occupied. If the arbitrarily-
decided ties that arise under the TREE algorithm
are decided in favor of the server that has moved
least recently then TREE and LRU will behave
identically.

15

Thus, all the algorithms we have seen so far are
quite similar.® However, there are other ways to
optimally solve the on-line k-server problem. The
optimal on-line solution to the k-server problem on
a space of k+ 1 points presented in [MMS88] is an
example of another approach.

5.1

Before we present the algorithm of [MMS88] and
prove its competitive ratio, we must introduce
some more terminology and notation. Let M be a
metric space. A configuration of k servers is a func-
tion S from the integers {1,...,k} to the metric
space M that gives the locations of the k servers.

There is a natural equivalence relation that
arises when the £ servers are indistinguishable. We
say that two configurations S and T are equiva-
lent if they are the same except for a relabeling
of the servers. Precisely, S ~ T if there exists a
permutation 7 of the integers {1,...,k} such that
S(n(i)) =T(@) fori=1,... k.

The distance between two configurations is the
minimum amount of movement needed to move
the k servers from one configuration to the other.
As with the equivalence relation, we must allow
for relabeling so we define the distance between
configurations S and T by

k
|S = T| = min {Z 1S(m(2)) - T(i)l} :

i=1

n-1 Servers in a Space of Size n

This distance function satisfies the triangle in-
equality. Let S71,S2, and S3 be configurations and
let w15 and 73 be permutations such that

k

11— Sa| = > [Si(mia(i) — S2(d)]
i=1
k

|So — S5 = Z|52(7T23(i))—53(i)|
i=1

We check that |S1 — S| 4 [S2 — S5 > [S1 — S3] as
follows:

|S1 — Sa| + [S2 — S3]

61f we had the desire to do so we could probably design
a single abstract algorithm that performed optimally in all
the cases we have examined so far.

k

= > (I1S1(m2(i)) — Sa(4)|

L ISa(mas(i)) — Ss(0))
k
= Z(|S1(7T12(7T23(i)))*52(723(i))|

+[S2(ma3(i)) — S3(4)])
k
Z 1S1(m12(723(4))) — S3(4)]
k
min {Z |S1(m(4)) — 53(1')|}

i=1

= [S1 — Ss

\%

%

Thus the set of configurations modulo the equiva-
lence relation forms a metric space.

We write Copr(om,,S) for the total cost of
a cheapest (off-line) way to serve a request se-
quence o, of length m, starting from any start
configuration and ending in a configuration S.
It is important to note that Copr(om,S) is still
well defined in the case that S does not contain a
server at the last request site. In such a case some
movement must be made after the last request is
served to get to the configuration S.

We can define Copr recursively on the length
of the sequence of requests. For any S, let
Copr(00,S) = 0. Let F,,, to be the set of all
configurations that have a server at the location
o(m). We define

. ’ ;-
Copr(om,S) = Join {Copr(0m-1,5")+|5"=S|}.

m

This is the same as our previous definition because
a cheapest way to serve m requests and end up in
S is the same as the cheapest way to satisfy m —1
requests, end up in a configuration that satisfies
the mth request, and then move to S.

Notice that

Copr(0m,S) > Copr(om—1,5)

for all S because the left-hand side represents the
cost of sequence which is a superset of the sequence
of the right-hand side. Equality holds when S €
Fon-

16

Now let’s begin the description of the BAL
(which is short for balancing) algorithm for k serv-
ers in a metric space with n points where n = k+1.
Let the n points be {1,...,n} and let S; be the
configuration of k servers that has exactly one
server at every location except i.

Assume that initially BAL starts with its servers
in configuration S, but that the adversary may
start with its servers in any of the n configurations
{S1,...,5,}. We will assume that the adversary is
reasonable and we will define BAL to be reasonable
so we need only ever consider the n configurations
just described.

Let’s define d;; to be the distance between points
i and j. In terms of configurations of servers we
get |Sz — S]‘ = d,‘j.

BAL is quite simple. Each of BAL’s servers
keeps track of how much work it has done. Let
D;(o,,) be the sum of all work done up to and
including the mth request by the server whose lo-
cation is ¢ after the mth request. If BAL gets a
request to a location in which it already has a
server it does nothing. If BAL is in configura-
tion S; and the (m + 1)st request is to location 4
BAL chooses a j that minimizes D;(0,,) +d;; and
moves the server at j to the requested location i.
That is, BAL moves a server whose total work af-
ter the move would be minimum. Equivalently,
BAL moves a server that minimizes D;(op+1)-

Since BAL does no work and does not change
any of its state when a location it occupies is cho-
sen as a request we will assume without loss of
generality that the adversary always requests the
unique location not occupied by one of BAL’s serv-
ers.

It is convenient to define D;(o,,) even if ¢ is un-
occupied by BAL after serving the request o(m).
In this situation we define D;(0,,) = D;(0m-1)-
When m = 0 we define D;(0,,) to be zero for
t=1,...,n.

Lemma 7 D;(0,,) = Copr(om,S;) for all i =
1,...,n and all nonnegative integers m.

Proof: We will prove this by induction. For the
case m = 0 we note that no server has moved yet
so D;(o¢) = 0 for all i. Furthermore, since we are
allowing the adversary to start in any configura-

tion it is also true that Copr(cg,S;) = 0 for all
1.
Let’s suppose that for all ¢

D;i(0m-1) = Copr(0m-1,5:)

and let’s compute D;(o,,). Note that if ¢ # o(m)
then after the mth request either there is a server
at ¢ and it hasn’t moved or a server has just va-
cated the location. In either case D; does not
change. That is,

Di(om) Di(om-1)

= Copr(0m-1,5:)-

The last term, Dy () (0m), can be computed by
examining how BAL decides which server to move.
It chooses a server that can move with lowest total
cost thus we get that

Da(m) (Um)

= min {D;(om_1) +d;sm
j;ﬁg(m){ i(1) + djo(m) }

= 4min {COPT(Umfla‘S’j)J'_‘Sj_S‘T(m)|}
Jj#o(m)

The minimum does not include the point o(m) be-
cause BAL has no server at that location before the
request is made.

Now let’s compute Copr(om,S;) for all i. If
S; € Fp, then we know that ¢ # o(m). Thus we
can conclude that

Copr(om,Si) = Copr(odm-1,5:)

When it is not true that S; € F,, then it must
be that ¢ = o(m). Thus the recurrence relation
gives

Copr1(0m, Si)

. . / r_
— Sl?}z’gjl(m){COPT(o-m—l, S) + |S Sa(m)|}

= Da(m) (Um)

We conclude D;(0,,) = Copr(om,S;) for all ¢
and all m. =

Theorem 8 The BAL algorithm for k servers in a
metric space withn = k+1 points is k-competitive.

Proof: The total cost for BAL in serving the
sequence o, is the sum of the costs attributable
to each of its servers. That is,

Z Di(om)
i#o(m—+1)

= > Coprlom,Si)

Si#So(m+1)

Cgan(om) =

On the other hand the cost to the adversary is
Capv(om) = H}Si_H{COPT(UW Si)}

because the adversary must satisfy all the requests
but can end up in any configuration.

To show that BAL is k-competitive we must
show that Cpar(om) — kCapv(om) is bounded
from above by a constant that is independent of
the sequence o,,. Comparing the formulae for
Cga1, and Capy we see that it is sufficient to show
that |Copt(0m, Si)—Copt(0m, S;j)| is bounded by
a constant that is independent of o,,.

Let

dmax = max {dU}
ij=1,..,n
If we can prove that
Copr(om,Si) < Copr(om,Sj) + dmax

for all 7 and j then we are done.

The inequality is little more than a statement of
the triangle inequality.

Copr(om, S;)
= Snel}}}n{OOPT(Um—hS) +1S = Sil}

< min {COPT(Umfla S) + |S - SJ‘

Sef”n
+ ‘Sj —Si|}
= Snelin {Copr(0m-1,9) +[S — S|}
+|S; — Si

= Copr(om,S;) +dji
COPT(Oma S]) + dmax

5.2 Lk Servers in a Space of Size n

The k-competitive algorithm BAL that runs in a
metric space of k 4+ 1 points can generalized to
an algorithm FINITE that runs in any finite met-
ric space M. Unfortunately, FINITE is not k-
competitive. We will see shortly that its competi-

Z) — 1 where n is the num-

ber of points in the metric space. Notice that when
k+1

T)-1=k

tive ratio is at most (

n = k+1 the competitive ratio is (

as expected.

As we did in Section 5.1 we assume that the
adversary only chooses requests at locations not
occupied by a server belonging to FINITE. We as-
sume that the adversary is reasonable and hence
the adversary will always have its servers at dis-
tinct locations. We will define FINITE so that it
always has its servers at distinct locations. Under
these assumptions the only configurations that will
be important are those with k servers at distinct

locations. There are (") of these.

)

FINITE is a generalization of BAL except that
we dispense with the D;(o,,) values and deal di-
rectly with Copr(om,S). Initially, we set

Copr(00,5) =0

for every configuration S. Let Si,...,5,-1 be
the configurations that FINITE occupied after the
first m — 1 requests and suppose the mth request
is to a location o(m). Recall that F,, is the set of
configurations that have a server at o(m). FINITE
moves to a configuration .S,, € F,, that minimizes

COPT<Um7 Sm) + |Sm - Sm—1|

among all configurations in F,.

Intuitively, FINITE is moving to a configura-
tion that is cheap for the adversary but isn’t too
far from S,,—1. Moving to configurations which
are cheap for the adversary helps make FINITE
competitive since the adversary is always choosing
requests at locations where FINITE has no server.
An adversary in the same configuration as FINITE
is thus forced to move to satisfy the next request.
The net result is that an adversary that was per-
forming cheaply is forced to do more movement.

18

BAL made sure that each server did an equal
share of the work. In some sense it is correct to say
that FINITE makes sure that each configuration
does an equal share of the work. We will see that
FINITE can serve the sequence for no more than
the sum of the costs over all but one of the con-
figurations. Using the fact that the adversary can
serve a sequence incurring the cost of the cheap-
est configuration will lead easily into a proof that
the competitive ratio of FINITE is not more than

n
(A)— 1.

Lemma 9 is best motivated by the fact that it is
useful in Theorem 10. In that theorem we bound
the cost incurred by FINITE while serving a se-
quence o. We will be considering sums of the form

> Copr(os,)

S#S;
for i = m, m — 1. The difference of these two sums
will include terms of the form found in the lemma.

Lemma 9
C(OPT(CTma Sm—l)_COPT(Um—h Sm) = |Sm_Sm—1|
form > 0.

Proof:

C(OPT (Uma Sm—l)
= Srg}gn{COPT(Um—lv S)+ |8 — Spm—1l}

= S%g}n{COPT(U7naS) + ‘S - Sm—1|}

= OOPT(Um7 Sm) + |Sm - m—1|

The first equality is the recurrence relation
defining Copr. The second equality is true be-
cause S € F,,. The third equality follows because
FINITE chooses Sy, to minimize the expression. ®

We can plug this result directly into Theo-
rem 10.

Theorem 10 Define Crin(om) to be the total
cost incurred by FINITE serving the sequence o,.
Then

Crin(om) < Z Copr(0m,S)
S50

Proof: The proof is by induction on m. When
m = 0, both sides are identically zero.
Now, for m > 0,

> Copr(om,S)

> Copr(om-1,9)

S#Sm S#Sm—1
> Copr(0m,Sm-1) — Copr(0m—1,5n)
|Sm — Sm—1]
= Crin(om) — OriN(Om—1)

The first inequality comes from comparing terms
in the two sums. All terms involving configura-
tions other than S, _1 and S,, can be thrown away
because Copr(0m,S) > Copr(0m—1,5). The first
equality comes from Lemma 9.

Thus, the induction hypothesis,

CriN(Om—1) Z Copr(om-1,9),
S¢Sm 1
implies
Crin(om) < Y Copr(om, S).

S#Sm

Since we allow the adversary to start in any con-
figuration and since it does not care in which con-
figuration it ends up, we know

Capv(om) = mSiH{COPT(Um S)}

The proof of the competitiveness of FINITE fol-
lows easily.

Theorem 11 FINITE for k servers in a metric
space M with n points has a competitive ratio of

()—L

Proof: We must show that

n

Crin(om) — {(B 1} Capv(om)

is bounded above by a constant independent of o, .
Given the formulae we have for Cgiy and Capy the
problem reduces to showing that

|Copr(0m,S) — Copr(om,S")]

19

is bounded above by a constant independent of o, .

We proceed much as we did in Theorem 8. De-
fine dyax to be the maximum distance between two
points of M. The maximum distance between two
configurations is bounded by kdpa.x, a constant.
The recurrence relation for Copr and the triangle
inequality give

Copr(om,S)
= guin {Copr(om-1,5") +15" = S|}
< S“Héljfrl {Copr(om-1,5")
+ 9" =S| +15" -S|}
= Juin {Copr(om-1,5") +|5" = 5’}
+18" = 5]

S COPT (Jma Sl) + kdmax

Part 11
Distinguishable
Costs

Traditionally, the k-server problem has been for-
mulated so that the k servers are indistinguish-
able. We can imagine situations where this is
not the case. An example is the SRAM versus
DRAM memory management problem mentioned
in the introduction. Each block of memory is a
server. The pages of data are the points of the
metric space. Moving a server from one page to
another corresponds to flushing the first page from
the block of memory and loading the second page
in. The cost of the move is its duration.

If the pages reside on different media (e.g. cache,
disks, tape drives) then different moves may have
different costs. Traditionally, the k-server model
does assume that the cost can vary based on the
points in the metric space. However the cost must
be independent of the server serving the request.
In this case the servers are blocks of memory so
the traditional model insists that every piece of
memory behaves the same as every other. If we
want to break that assumption and let the cost be

a function of the server we must look into a more
general model.

The model we consider in this report is one
where the cost of any move is proportional to the
distance in the metric space but the constant of
proportionality may vary from server to server. We
call this the k-distinguishable-server problem.

6 Obvious Bounds

It would be nice to have bounds on the competi-
tiveness of the k-distinguishable-server problem in
various metric spaces. For instance, a theorem
similar to the one by [MMS88] that states that no
on-line k-server algorithm can have a competitive
ratio better than & would be good.” Fortunately,
a few bounds on the competitive ratio of on-line
algorithms for distinguishable servers are immedi-
ate.

Define p; > 0 to be the cost coefficient for the
ith server. By cost coefficient we mean that the
the cost incurred by moving the ith server from
x to y is pi|lr — y|. The k-tuple (u1,...,pux) is
the tuple of cost coefficients. Generally, an on-line
algorithm ALG and the adversary will have the
same tuple of cost coefficients for their servers.

Let’s relax this last constraint for the moment
and assume that the adversary and ALG may have
independent cost coefficients. If the cost coefficient
of one of ALG’s servers is increased but ALG still
moves exactly as before then ALG’s cost will be
at least as much as before. The adversary’s cost
will remain unchanged. Hence, ALG’s competi-
tive ratio will be at least what it was before. If a
cost coefficient of ALG’s is lowered then the com-
petitive ratio will be no worse than it was before.
Similarly, if the cost coefficient of one of the ad-
versary’s servers is increased the competitive ratio
cannot worsen and if that coefficient is decreased
then the ratio cannot improve. It is also true that
if the cost coefficient of each of ALG’s servers is
multiplied by some positive constant or if the cost
coefficient of each of the adversary’s servers is di-
vided by some positive constant then ALG’s com-
petitive ratio will be multiplied by that constant.

7See Section 2 for a statement and proof of the theorem
by [MMS88].

20

From these simple observations we can prove
Lemma 12.

Lemma 12 Suppose an on-line algorithm ALG
and an adversary each have k servers with cost

coefficients (p1, ..., uk). Let
Hmin = miin{Ui}
Hmax = mla'X{/L’L}

If the metric space M has at least k41 points then
the competitive ratio of ALG is at least k,’:“‘—“

Proof: Fix asequence of requests. Let Carc(on)
be ALG'’s cost for serving the first n requests of the
sequence. Let C'\1 o (o,,) be the cost for ALG if the
same moves are made but each server has a cost co-
efficient of unity. Similarly, define Capy (o) and
Cypy(0n) to be the costs incurred by the adver-
sary with the given cost coefficients and unit cost
coefficients, respectively.

Theorem 1 tells us that the competitive ratio
when the servers of the adversary and ALG have
unit cost coefficients is at least k. Since, for all n,

NminCALG (Un)
Hmax C;XDV (Un)

Carc(on) =
Capv(on) <

it follows that the competitive ratio for ALG is at
least kﬁL u
Likewise we can prove:

Lemma 13 Suppose an instance of the k-server
problem can be solved by an on-line algorithm
with a competitive ratio of c. If cost coefficients
(11, -, pr) are introduced then this instance of
the k-distinguishable-server problem can be solved
by an algorithm with a competitive ratio of no more
than cﬁ where

Mmin =

min{y; }
max{/i; }.

Mmax —

Proof: Run the algorithm as if the cost coeffi-
cients were unity. ®

The lower bound given in Lemma 12 can be

tightened. Rather than bounding the adversary’s

cost by pimax times the distance moved we can
bound it by paye times the distance moved where

1 k
Havg = E Zﬂi-
i=1

Furthermore, the adversary has the option of not
using its more expensive servers. By assuming that
the adversary only uses its cheapest servers we may
be able to prove an even tighter bound for the
competitive ratio.

Theorem 14 Suppose an on-line algorithm ALG
and an adversary each have k servers with cost
coefficients 1 < ... < py. If the metric space M
has at least k + 1 points then the competitive ratio
of ALG is at least

ma { klimin }
xd _ ~Pmin

7 (k +1-—])MJ
where

1 J
Mj = EZ/M
i=1

the average of the j lowest cost coefficients.
particular, the competitive ratio is at least

In

kﬂmin
Havg

Proof: The proof is very similar to that of The-

orem 1. Choose a subset of M with k + 1 points
and assume that ALG starts with its servers in
distinct locations. Assume that the adversary al-
ways requests the unique location not occupied by
one of ALG’s servers. Even if ALG always moves
its cheapest server the cost to satisfy a request se-
quence will be

Carc(0n) = Y pminlo (i +1) — o (i),

i=1

Suppose the adversary decides to use only its
cheapest j servers and suppose one starts at the
location of the first request and the other j—1 start
spread through the remaining k locations, at most

. . k
one to a location. There are t = j!(i) ways

1
to place the servers since they are distinguishable.

21

We run t adversaries each with the same algo-
rithm but differing in which of the ¢ configurations
they begin. To satisfy a request o(n) an adversary
either does nothing if it already has a server at
the request or, otherwise, moves the server from
o(n—1).

In Theorem 1 we had that no two distinct ad-
versaries would end up in the same configuration
after a given request sequence. The same observa-
tions and arguments prove this fact for our current
situation. Thus, after each request we know that
the adversaries occupy the ¢ distinct configurations
that have a server at the last request.

We add up the costs charged to the adver-
saries for a request o(n). Among the adversaries,
4 k=1
MGy

will incur no cost to serve the request. The remain-

will already have a server at o(n) and

ing j!(I; : i)adversaries will not have a server at
o(n) and will have to move the one from o(n —1).
The cost for each of these adversaries will be, on
average, Mj|lo(n) — o(n — 1)|. The average of the
cost coefficients is M; because we have adversaries
in all configurations and hence it is equally likely
that we are moving any of the servers.

The total cost to move all ¢ adversaries is
k-1
> Ml (m) — o(n 1)
i=2

therefore there must be one that is at least as cheap
as the average

BT Y fon) — o -)]

=2

It follows that the competitive ratio cannot ex-

ceed
klflmin
maxq ————— ¢ .
J {(k+1—J)Mj}
In particular, the j = k term gives that
k/fcmin
ﬂavg

is a lower bound on the competitive ratio of any
on-line algorithm. m

The proofs in this section do not account for the
fact that an on-line algorithm may move a server
with a cost coefficient different from pp,;,. We
make the conjecture that an adversary can force
a better competitive ratio than the one given in
Theorem 14.

Conjecture 1 No deterministic on-line algo-
rithm for the k-distinguishable-server problem on a
metric space with at least k + 1 points can achieve
a competitive ratio better than k.

7 Uniform Metric Spaces

In specific cases of the k-distinguishable-server
problem we can get better bounds on the compet-
itive ratio. For instance, the bound of Lemma 13
can be improved if M is the uniform metric space.
In this case we have a competitive ratio of k%
for LRU.

Assume that the adversary always makes re-
quests to locations which do not contain a server
belonging to LRU. And assume that, initially, LRU
uses its servers from cheapest to most expensive.
From then on it uses the least recently used server.
In effect, it is using the sequence cheapest to most
expensive over and over again. Thus the average
cost to serve a sequence for LRU is bounded by
Havg times what it would have been with unit cost
coeflicients.

At worst (for LRU) the adversary can manage
to use fiyin times the cost it would have had with
unit cost coefficients. Thus LRU has a competitive
ratio of k£2= We do not know if there is an on-
line algoritrlnllrrh that achieves a better competitive
ratio.

8 Two Servers

In this section we look at the k-distinguishable-
server problem for k = 2 servers in various metric
spaces. First we consider the line. Then we gener-
alize the results to the Tree and to arbitrary metric
spaces.

22

8.1 Two Servers on a Line

We will demonstrate an upper bound to the com-
petitive ratio of an optimal on-line algorithm for
2 servers on a line by giving an algorithm. After-
wards we will prove a lower bound.

The algorithm we will use to find an upper
bound is the DOUBLE_COVERAGE algorithm
from Section 4.2. Although we tried tweaking the
parameters of DOUBLE_COVERAGE to make
it more suitable for the k-distinguishable-server
model we did not find any algorithms that were
better. We discuss some of these attempts in Sec-
tion 8.2.

Theorem 15 The DOUBLE_COVERAGE algo-
rithm for 2 distinguishable servers on a line has
a competitive ratio not exceeding

3 (1) 1

Mmin
2

where lmin 18 the lower of the two cost coefficients
and pmax @S the higher.

Proof: The proof will involve a potential func-
tion ®. Without loss of generality assume that the
smaller cost coefficient is unity and the other is
@ > 1. Let s; be DOUBLE_COVERAGE’s unit-
cost server and let so be the more expensive server.
Let a; and as be the cheaper and more expensive
of the adversary’s servers. As usual, we will also
use Si,S9,a1, and ag to represent the location of
these servers.

Let 7 be a permutation of {1,2} and define the
potential function to be

®=Uv+0

where

2
3u+1 .
U = 5 mﬂln{2|si—aﬂ(¢)}

i=1

and

1
oMt

|s1 — sa

Except for the coefficients at the front of the ¥
and © terms this potential function is identical to
the one given in Theorem 4. The introduction of

the permutations 7 is really nothing new. In Theo-
rem 4 it was unnecessary to consider the minimum
over all permutations because the servers were in-
distinguishable and we could relabel them at will.
We kept relabeling them so that the permutation
(1) = ¢ minimized the ¥ term.

The potential function is nonnegative so we are
left to check that

1. When the adversary moves ® increases by no
more than (3 + 1)/2 times the cost of the
move.

2. When DOUBLE_COVERAGE moves ® de-
creases by at least the cost of the move.

The first item is easy. A server move by the
adversary cannot increase ¥ by more than (3u +
1)/2 times the distance moved by the server. Thus,
U increases by no more than (3p + 1)/2 times the
cost of the move.

The second item is not much harder. Assume
the adversary is reasonable. Recall from Theo-
rem 4 that we are guaranteed that at least one of
DOUBLE_COVERAGE’s moving servers is mov-
ing towards the server it is matched to under a
minimum-distance perfect matching. When a re-
quest falls between sy and s, we know that ¥ will
not increase because the server moving towards its
match will lower one term of the sum enough to
cover any possible increase in the other term. The
movement of the servers towards each other will
cause a drop in © exactly equal to the cost of the
movement.

When a request is not between DOUBLE_COV-
ERAGE’s servers we have that the decrease in ¥
is sufficient to cover the cost of the move and the
increase in ©. ¥ decreases by (3u + 1)/2 times
the distance the server moves while © increases
by (u + 1)/2 times the distance moved. Thus @
decreases by p times the distance moved. Regard-
less of which of DOUBLE_COVERAGE’s servers
is moving, this will be a decrease of at least the
cost of the move. &

We will prove a lower bound on the competi-
tiveness of any on-line algorithm ALG that runs
on a line by demonstrating a strategy that can
be employed by an adversary to keep ALG’s costs
high. The strategy is a loop. The servers start

23

at certain points on the line and the adversary
makes requests until the servers return to their ini-
tial positions. For each iteration of the loop, the
cost charged to ALG will be at least twice the cost
charged to the adversary. Thus the competitive
ratio of ALG cannot be better than k(= 2). This
is a better bound then the obvious bounds derived
earlier.

Although it is not known if this bound is tight,
it is interesting to note that when piyax is strictly
greater than g, the competitive ratio must be
strictly greater than k. For the traditional k-server
problem no one has ever proven that an optimal
on-line algorithm must have a competitive ratio
exceeding k.

Theorem 16 No on-line algorithm ALG for 2
distinguishable servers on a line can have a com-
petitive ratio better than

2 2
1+(—” >
I

where M= ﬂlnax/ﬂmin-

Proof: Without loss of generality assume that
the cheaper server has a cost coefficient of 1 and
the other server has a coefficient of y > 1. Let s1
and sy be respectively the cheaper and more ex-
pensive servers belonging to ALG. Likewise define
a1 and ag for the adversary. Without loss of gen-
erality because we are minimizing over all on-line
algorithms we will assume that ALG is reasonable.

When we want to prove that ALG is c-
competitive for some value ¢ then we must show
that there exists a constant a such that for every
request sequence o

cCopr(0) — CarLg(o) +a > 0.

To prove that ALG is not c-competitive it suffi-
cient to find an adversary and an infinite sequence
o such that

i%f{COADv(O'n) — Cara(on)} = —o0.

As usual we are using o, to mean the first n re-
quests of 0. We will describe an adversary and a
o such that ALG is not c-competitive unless

9 2
ch—i—(—M) .
w41

The sequence o will be a repeating loop. The
initial position for the loop involves two locations
separated by a unit distance. Both ALG and the
adversary have a server at each of the locations.

Assuming that ALG is competitive, the adver-
sary can force the servers into this initial configu-
ration. The adversary makes the first two requests
to points that are unit distance apart. It then re-
quests them alternately until ALG moves its serv-
ers into a configuration that covers both locations.
The adversary serves the sequence by moving its
servers to the two locations.

This always works unless the reasonable ALG
tries to serve every request using just one server.
However such an algorithm is not competitive.
This initialization may have a cost but the cost
to the adversary can be absorbed into the additive
constant present in the definition of competitive
ratio.

The requests made during an iteration of the
loop follow a simple pattern. Choose e such that
0 < e < 1. The adversary alternates making re-
quests at the location initially occupied by s; and
the location between s; and so that is a distance e
from s5. This continues as long as ALG uses s5 to
serve the request. As soon as s is used, the adver-
sary makes a request to the location just vacated
by s1.

Let d be the product of the distance ¢ and the
number of requests for which ALG uses s3. That
is, d is the total distance moved by s, before s;
is moved. ALG has only two options during an
iteration of the loop. It gets to choose d and it
gets to choose which server to move to the location
vacated by s;.

If ALG moves s; to satisfy the request at the
vacated location then

ACaLg > pd +2(1 —¢)

for an iteration. The first term is the cost of the
wiggling and the second term is a lower bound on
the cost to move s; in and then back out. If ALG
uses So instead of s1 to satisfy the last request then
it will incur an additional cost of at least (u—1)(1—
€).

We will define the adversary so that at the be-
ginning of an iteration it will be in one of two con-
figurations. Either |a; — s1| = |ag — s2] = 0 or

24

|ay — s2] = |ag — s1] = 0. The first configuration
is called matched and the second configuration is
called switched. We will write Capv (opn, M) (resp.
Capv(on,S)) for the cost to serve the sequence o,
and end in the matched (resp. switched) configu-
ration.

By switching the locations of its two servers, the
adversary can change from configuration M to S
or vice-versa for a total cost of 1 + p. Hence we
always have that

|Capv(on, M) — Capv(om, S)| <1+ p.

The adversary’s cost for a sequence will be the
smaller of these two costs. Since the difference
between the two costs is bounded by a constant,
the cost to the adversary will be within a con-
stant of any weighted average of Capy (0, M) and
Capv(0n,S). In particular, the cost to the adver-
sary on a sequence o, will be within a constant
n—1

of
Lo 2l) oo, S)
9 QC(IU,-F 1) ADV\On,
1 w—1
i

2e(p+1)
where c is a prospective competitive ratio for ALG.
We want to show that ¢cCapy — CaLg is un-
bounded below unless c is large enough. With this
in mind we define

)CADV(UmM)

p—1)(1—e)

20,u+1))CADV(J”’S)
(1= 11— ¢

(2) Canvienan)
— Carc(on).

If we can show that inf, {Q(o,)} = —oo then we
know that ALG is not c-competitive. Therefore, it
is sufficient to show that there is a § > 0 such that
for all iterations

AQ < =4

Let’s calculate ACapyv (M) and ACapv(S) for
an iteration assuming that ALG does not switch
its servers (i.e. does not pay the extra (u—1)(1—¢)

at the end of the iteration.) The adversary has the
option of serving an entire iteration with its server
at the same location as so. Alternatively, the ad-
versary can move the other server in at the start
and then move it back at the end of the iteration.

When ALG does not switch its servers, both op-
tions for the adversary leave the adversary in the
same configuration in which it began the iteration.
That is, it finishes switched if and only if it starts
switched. It finishes matched if and only if it starts
matched.

The adversary has two options for serving an
iteration. Thus, we compute:

AOAD\/(M) S min{ud,Q}
ACapv(S) < min{d,2u}

The first term in each minimization represents the
wiggling option. The second term is the other op-
tion. It is the cost the adversary must pay to move
the outside server in at the beginning of the itera-
tion and back out at the end.

We'’ve already established that

ACarLg > pud +2(1 —).

Thus,
AQ <
(3[(% +_§H§££%%%igfl> min{d, 24}
— pd —2(1—¢).

The right-hand side of this expression is a piece-
wise linear function of d. When d = 0 it is nega-
tive. Also as d — oo it goes to —oo.

We wish to show that the right-hand side is neg-
ative no matter what the value of d > 0 unless c is
big enough. The right-hand side is nonnegative for
some value of d if and only if it is nonnegative at
its maximum. Since as a function of d it is piece-
wise linear its maximum must occur at one of the
points of nondifferentiability. That is, a nonnega-
tive maximum will occur at d = 2/p or d = 2u.

Evaluating, we see that AQ(d = 2/u) can be
nonnegative for all values of € only if

2 2
> Spt+2u+1 N (2_u> .
(n+1)2 pt1

25

We also have that AQ(d = 2u) can be nonnegative
for all values of € only if
3. ,2
> 2p° +pf +4p+1
SRS

This second bound is more restrictive than the first
so we can ignore it.

Thus, no matter what value ALG chooses for d,
inf,, {Q(0,)} will be —oco unless ¢ is as big as stated
in the theorem. If ALG never switches its two
servers the theorem is proved.

Suppose ALG does switch its servers at the end
of an iteration. The additional cost to ALG for
a switch must be at least (u — 1)(1 —€). We can
think of this an as additional step in which the
adversary incurs no cost. We must check that
does not increase as a result of this extra step.

The Car,g term of 2 causes €2 to drop by at least
(v —1)(1 — €). However, the other two terms of 2
may increase due to the fact that ALG’s switch
causes a renaming of the adversary’s configura-
tions S and M. That is, S and M as well as their
costs, Capv(on, M) and Capvy(oy,S), swap. We
know that the difference between these costs is not
more than 1+ p. Thus, switching S and M cannot
increase € by more than (1—1)(1—¢). Hence, com-
bining to two changes to 2, we see that AQ < 0
for ALG’s extra switch step. ®

As already remarked before, this bound is > k
when g > 1. As g — oo the bound goes to 5. The
value 5 seems unnatural and occurs as the result
of much messy algebra. We don’t know if it can
be improved.

8.2 Varying the Speeds

The way DOUBLE_COVERAGE is designed,
when both servers are moving they move the same
distance. We can imagine that the servers are mov-
ing continuously through time along the line, at
the same speed, and stop when one reaches the re-
quest. An obvious question is “What happens if
we make them move at different speeds?”

Before exploring this topic we must take another
look at potential functions. Multiplying a poten-
tial function ® by a positive constant will change
some of its properties. It will remain nonnegative.
However, it may no longer be true that a move by

an adversary causes ® to increase by no more than
the competitive ratio times the cost of the move.
Furthermore, a move by an on-line algorithm ALG
may not cause ® to decrease by at least the cost
of the move.

The scaled potential function is still useful in
that it can be converted into a canonical potential
function by multiplication. Thus the existence of
a scaled potential function, like the existence of a
canonical potential function, allows us to prove a
competitive ratio for an algorithm.

Lemma 17 Let ALG be an on-line algorithm.
Suppose @ is a nonnegative function. Consider a
move by an adversary. Let A®P(ADV) be the re-
sulting change in ® and let AC(ADV) be the cost
of the move. Define

A . ADP(ADV)
= u —_—

all mcI))vcs AC(ADV)
Similarly, for a move by ALG define

B AD(ALG)
B=- allszgvcs { AC(ALG) } '

If A and B are positive and ¢ = A/B then ALG

18 c-competitive.

Proof: The function ®/B is a canonical potential

function for ALG proving a competitive ratio of c.
]

We wish to consider variations to DOU-
BLE_COVERAGE. If we wish to prove that they
have a better competitiveness then that proven in
Theorem 15 we must allow the potential function
to change as well. We can generalize by consider-
ing a potential function of the form

2
Crr;in{z lsi — a,r(i)|} + D|s1 — s3]
i=1

for some constants C, D > 0. Since we may scale
our potential function it is as general to consider

2
® = min |si—aﬂi|}+D|sl—52|
{3 1o
for D > 0.

As usual we will assume that the cost coefficients
are {1, u} with 4 > 1. Also, s1,s2,a1, and as are
as before. We will consider two variations.

1. When a request falls between s; and ss, s1 will
move with speed E > 0 towards the request.
so will move at unit speed.

2. When a request is not between s; and sy but
is closer to sy then s; will move with speed
F > 0 towards the request. ss will move at
unit speed. If F > 1 then it is possible that
s1 will overtake so. At that point so halts and
only s; continues.

To see if we've gained anything by allowing these
variations we will compute A and B as defined in
the statement of Lemma 17 and calculate their ra-
tio. As we have before, we assume that in response
to a request, first the adversary moves and then
DOUBLE_COVERAGE moves. We also assume
that the adversary is reasonable.

To get A we note that for every unit of distance
that a server of the adversary moves, ® can in-
crease by at most 1. The cost of the movement
will be at least one. It is not hard to imagine a sit-
uation where both these inequalities are equalities.
Therefore

A=1.

We can separate the computation of B into four
cases based on the location of the request and
which server is matched to the adversary’s server
at the request.

1. The request falls between the servers and the
adversary’s server at the request is matched
to sq.

2. The request falls between the servers and the
adversary’s server at the request is matched
to so.

3. The request falls on the s; side of DOU-
BLE_COVERAGE’s servers and hence the ad-
versary’s server at the request is matched to
s1 under a minimum-weight matching.

4. The request falls on the s, side of DOU-
BLE_COVERAGE’s servers and hence the ad-
versary’s server at the request is matched to
s2 under a minimum-weight matching.

For each case, we calculate A® and AC for each
unit of distance that sy moves and take their ratio.

1. s1 moves a distance E towards the s and to-
wards its match. s, moves unit distance to-
wards the s; but may be moving away from
its match. Thus

AP< -ED—-FE—-D+1

and
AC=F+p

SO

<ED+E+D—1

B
- E+p

2. In a similar manner this case gives

B < ED—E+D+1'
- E+p

3. Only s; moves. It moves away from s, but
towards its match hence,
-D+1

B < .
- 1

4. s1; moves a distance F' towards s, but may be
moving away from its match. so moves a unit
distance away from s; but is moving towards
its match. Thus

B<FD—F—D+1'
- F+pu

Since we must have B > 0 the third item gives
us that D < 1. It then follows that the fourth
constraint is always tighter than the third. Thus
we can ignore the third constraint. The first two
items can be combined into

D(E+1)—|E -1

B<
- E+p

We now have just two constraints on B. The
first is a function of E and D and the second is
a function of F' and D. Maximizing the first with
respect to E gives F = 1. Maximizing the sec-
ond with respect to F gives F' = 0. However
E =1, F = 0 corresponds to the unmodified DOU-
BLE_COVERAGE algorithm! Varying the speeds
did not help us.

As expected, if we solve for D getting

D=—
3u+1

27

and plug into our constraint equations we get that

2
B:
3u+1

and a competitive ratio of

A 3u+1

B 2

Needless to say, other generalizations of DOU-
BLE_COVERAGE and other potential functions
may be tried. We did not find any combinations
that we could use to prove a better competitive
ratio than that achieved by the unmodified DOU-
BLE_COVERAGE algorithm.

8.3 Two Servers
Space

in Any Metric

Just as DOUBLE_COVERAGE gives a competi-
tive ratio of (3p 4 1)/2 for servers with cost coeffi-
cients {1, u}, the unmodified TREE and TWO al-
gorithms give the same competitive ratio under the
same conditions. The potential function defined in
Section 8.1 works for both TREE and TWO. The
algorithms themselves are exactly as they would
be for two equal-cost servers.

The 1 + [2u/(1 + p)]? lower bound, from Sec-
tion 8.1, applicable to lines also applies to trees.
Every tree contains a line segment as a subset
though there may not be one of length at least
unity. However, the lower bound for lines is de-
scribed with points unit distance apart for con-
venience only. Any two distinct points on a line
segment will do.

The lower bound applies to any general metric
space M that contains a line segment. Note that if
M contains at least two distinct points then when
it is embedded in R" it will contain a line segment
connecting them. Thus if an adversary is allowed
to make requests in R" the lower bound applies.

9 Finite Metric Spaces
A modification to FINITE gives us an on-line al-

gorithm that works for distinguishable servers in
any finite metric space M. Number the servers

from 1 to k and let p1,..., ux be their cost coeffi-
cients. As in Section 5.2 a configuration is a func-
tion S: {1,...,k} — M that gives the location of
each of the k servers.

We define an equivalence relation different from
the one given in Section 5.2. We say that a per-
mutation 7 of the integers {1, ..., k} preserves cost
coefficients if for every i, we have p; = pir;y. Two
configuration S; and Se of distinguishable servers
are said to be equivalent if there exists a permu-
tation 7 preserving cost coefficients such that for
all 4 we have that S1(i) = Sa(7 (7))

Similarly we define the distance between two
permutations by

k
[S1 = 55| = min {Z |151(8) — Sz(ﬂ(i))|}

i=1

where the minimum is taken over all permutations
7 that preserve cost coefficients.

With these redefinitions we run FINITE as we
did before. Lemma 9 and Theorem 10 remain true
with the new definitions for equivalence and dis-
tance. In a metric space with n points there are

(n)r = k!(Z) distinct configurations modulo the

equivalence relation®. Theorem 11 remains true if
n

k
Putting it all together we get:

all occurrences of (;,) are replaced with (n)g.

Theorem 18 FINITE for k distinguishable serv-
ers in a metric space with n points has a competi-
tive ratio not exceeding (n); — 1.

Part III
Summary

10 Future Work

For indistinguishable servers there is room for im-
provement. Although the FINITE algorithm is a
generalization of the BAL algorithm it is not also

8This is true if the cost coefficients are distinct. In
any case this is an upper bound on the number of distinct
configurations

28

a generalization of the TWO algorithm. For in-
stance, FINITE does not perform as well as TWO
for the case of 2 servers in a metric space with 4
points. Can the two algorithms BAL and TWO be
merged into a more general solution that has the
advantages of FINITE and TWOQO?

There are several open questions for the k-
distinguishable-server problem. Can a better gen-
eral lower bound for the competitive ratio of an
on-line algorithm be found? How can we narrow
the gap between the lower bound and the compet-
itive ratios of the various algorithms presented in
this paper?

Acknowledgements

For their help, I owe thanks to many of the “The-
ory” students in the Graduate Computer Science
Program at UC Berkeley. I also owe thanks to
my advisor Dick Karp for input and advice on the
substance and presentation of this report.

I owe thanks to my parents, Herbert Newberg
and Babette Josephs, and my sweetheart, Heidi
Marvin, for being there when I needed them.

The bulk of the original research presented in
this paper was done during the summer of 1990 in
the Café Strada in Berkeley. I thank them for the
coffee and for the place to sit in the sun.

11 Glossary

The following definitions should prove useful.

a; The adversary’s ith server. Also used to rep-
resent the location of this server.

adversary An imagined opponent that chooses a
sequence of requests to demonstrate the worst
performance of an on-line algorithm. The ad-
versary will have its own set of k servers which
it uses to show how to efliciently serve a se-
quence of requests.

Note that the on-line algorithm cannot see
where the adversary’s servers are or how they
move. They are imaginary and exist only to
those reading the proofs.

between A point y is between the points x and z
if
|z —yl+ 1y — 2| = |z — 2]
That is, if there exists a shortest path from x
to z that passes through y.

Carc (o) The cost incurred by an algorithm ALG
on a request sequence o.

c-competitive An algorithm ALG
is c-competitive if there exists a constant a,
such that for every sequence of requests o, we
have that

Carc(o) < cCopr(0) +a

competitive An algorithm is competitive if it is
c-competitive for some constant c.

competitive ratio The competitive ratio of an
algorithm is the smallest ¢ for which the algo-
rithm is c-competitive.

configuration A configuration is a function S

from the integers {1,...,k} to a metric space
M that gives the locations of k servers. Let
7 be a permutation of the integers {1,...,k}.

Two configurations S and T are equivalent,
S ~ T, if there exists a m such that S(7(i)) =
T(i). The distance between two configura-
tions S and 7T is given by

k
S — 1| = ngn{Dsm(i)) —T(z')}.

i=1

If some servers are distinguishable then the
above definitions for equivalence and distance
still hold except that the permutations 7 are
limited to that subset of permutations that
map each server to a server having the same
cost coeflicient.

Copr(0,S) The cost of a cheapest (off-line) way
to serve a request sequence o starting from
any configuration and ending in the configu-
ration S.

cost coefficient The cost coefficient for the ith
server is p; if the cost to move it from = to y

is pilr —yl.

29

distance function See metric space.

k-distinguishable-server problem This is the
same as the k-server problem except that the
cost associated with a move by a server is pro-
portional to the distance moved. The con-
stant of proportionality may vary from server
to server.

k-server problem This is the task of finding an
efficient on-line algorithm for k servers. The
k-server problem involves a metric space with
a distance function. k servers are located at
points in the metric space. A request is a
point in the metric space. One of k servers
must be moved from its current point to the
requested point. The cost charged for such a
move is the distance between the two points.
If more than one server moves then the cost
is the sum of all the distances moved.

line A metric space whose points are the points
of a line. The distance between points is the
normal Euclidean distance along the line.

matched configuration The configuration in
the 2-distinguishable-server problem where
|a1 — 81| = |a2 — 82| = 0

metric space A metric space is a set, M, along
with a distance function d : M x M — R.
The elements of M are called points and the
distance function gives the distance between
any two points. The distance function must
satisfy certain constraints. Let z, y, and z be
points in M.

e For every z, d(z,z) = 0. That is, the
distance from a point to itself must be
Zero.

e For every z and y with = # y, we must
have that d(z,y) = d(y,z) > 0. In other
words, the distance from x to y is equal
to the distance from y to z and it must
be positive.

e d must satisfy the triangle inequality
which states that for every z, y, and z,
we have that d(z,z) < d(z,y) + d(y, 2).
So, if x, y, and z are the vertices of a
triangle then the length of any side must

be less than or equal to the sum of the
lengths of the other two sides.

Often we will write |z — y| or d, instead of
d(z, y)-

mu g The ratio of the largest cost coefficient to
the smallest cost coefficient.

1; The cost coefficient of the ith server.

Umax The largest cost coefficient.

tmin The smallest cost coefficient.

minimum-weight perfect matching A
permutation 7 such that

k
D 18 = angs)l
=1

is minimum over all permutations.

optimal An algorithm is optimal on a sequence of
requests if its cost is the smallest achievable
on that sequence. An optimal on-line algo-
rithm is an on-line algorithm which achieves
the smallest competitive ratio among all on-
line algorithms.

ordinary point A point x in a tree T is an ordi-
nary point if the set T — {x} has exactly two
connected components. Compare to verter.

potential function A function ® is a potential
function demonstrating a competitive ratio of
¢ > 0 for an algorithm ALG if it satisfies the
following conditions:

e ® is nonnegative.

e Every response to a request by the ad-
versary increases ® by no more than ¢
times the cost charged to the adversary
for that response.

e Every response to a request by ALG de-
creases @ by at least the cost charged to
ALG for that response.

The existence of a potential function satisfy-
ing these criteria is sufficient proof that ALG
is c-competitive.

30

reasonable We call an algorithm ALG’s response
to a request at x reasonable if either

1. ALG already has a server at = and does
not move any of its servers, or

2. ALG does not have a server at x and
moves one server to that location, but
does not move any of its other servers.

We cal ALG reasonable if every response it
makes is reasonable.

s; An algorithm’s ith server. Also used to repre-
sent the location of this server.
sigma o A (usually finite) sequence of requests.

This is a sequence of ¢ requests or the first
1 requests in a longer sequence.

g;

o(i) The ith request in a sequence o. It is
also used to describe the location of the
ith request in a sequence o.

switched configuration The configuration in
the 2-distinguishable-server problem where
lay — s2| = |ag — 51| = 0.

tree A metric space like a tree in the graph theo-
retic sense. Each edge is a line segment with
a length. The points of the metric space are
the points of the line segments including their
endpoints (i.e. the vertices of the graph). The
distance between two points is the length of
the unique simple path between them.

triangle inequality See metric space.

uniform metric space A metric space in which
the distance between any two distinct points
is 1.

vertex A point z in a tree T is a vertex if the set
T —{z} has more than two connected compo-
nents. Compare to ordinary point.

References

[BLS87] Allan Borodin, Nathan Linial, and Mi-
chael Saks. “An Optimal Online Al-

gorithm for Metrical Task Systems.”

[CKPV90]

[CL89a]

[CL89b)

[FRR90]

[GO1]

[MMS88]

Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Com-
puting, pp 373-382, 1987.

M. Chrobak, H. Karloff, T. Payne,
and S. Vishwanathan. “New Results on
Server Problems.” Proceedings of the
First Annual ACM-SIAM Symposium
on Discrete Algorithms, Chapter 32,
pp 291-300, January 1990.

Marek Chrobak and Lawrence L. Lar-
more. “An Optimal On-line Algorithm
for k Servers on Trees.” Department
of Mathematics and Computer Science,
University of California, Riverside, CA
92521. July 24, 1989.

Marek Chrobak and Lawrence L. Lar-
more. “A New Approach to the Server
Problem.” Department of Mathemat-
ics and Computer Science, University
of California, Riverside, CA 92521.
September 19, 1989.

Amos Fiat, Yuval Rabani, and Yif-
tach Ravid. “Competitive Algorithms
for Online Problems.” Proceedings 31st
Annual Symposium on Foundations of
Computer Science Volume II, pp 454-
469, October 1990.

Eddie Grove. “The Harmonic Online
K-Server Algorithm is Competitive.”
Proceedings of the Twenty-Third An-
nual ACM Symposium on Theory of
Computing 1991.

Mark S. Manasse, Lyle A. McGeoch,
and Daniel D. Sleator. “Competi-
tive Algorithms for On-line Problems.”
Proceedings of the Twentieth Annual
ACM Symposium on Theory of Com-
puting, pp 322-333, May 1988.

31

