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Hypothesis Testing vs. Credibility Limits

@ Question: Smith-Waterman alignment with E = 1049,
It's a good alignment right?

@ Answer: No, there is a reasonable chance that sizable
alignment blocks are wrong.

E-Value and p-Value Are for Hypothesis Testing
E, p are small when random data is unlikely to do as well.

Credibility Limits (a.k.a. Bayesian Confidence Limits)

How many differences must be permitted to capture 95% of the
posterior probability?
95% credibility limit is tight if most good solutions are similar.
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Smith-Waterman Alignment

95% relative credibility limit
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@ Individual cases are bad even at superb p-values.
@ E-values, p-values are a poor proxy for credibility.
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@ No single structure represents the ensemble well.
@ Minimum Free Energy isn’'t the best representative.
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Discrete High-Dimensional Inference

Much of computational biology is discrete high-D inference:

@ Sequence alignment ....... which residues are matched?
@ RNA secondary structure .............. which bases pair?
@ Network inference ................ which edges included?

@ Nucleosome occupancy ....at which sequence positions?

Solution spaces are immense yet we often choose a point
estimate solution.

Today’s goal: Compute a global measure of
representativeness of a point estimate.

Uncertainty of individual features (e.g., bases pairings) —
valuable and important but not our goal.
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Algorithms for Discrete High-Dimensional Inference

Many problems are tackled with dynamic programming:

Hidden Markov Models
® Sequence alignment: HMMER
@ Protein folding: HMMSTR / ROSETTA

Partition Function Computations
® RNA secondary structure: Sfold

Viterbi / Maximum Score / Minimum Energy
@ Seq. Alignment: Smith-Waterman, Needleman-Wunch
@ RNA secondary structure: Mfold

Collectively, Hidden Boltzmann Models
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Computing / Estimating Credibility

1. If Viterbi: Set solution space probability distribution.
2. Distribution of differences from point estimate via either:

Sampling via HBM Stochastic Backtrace
® Draw 1000 samples
® Compare to point estimate

Fourier Computation
@ Exaclty computes probability for each count of differences

® Runtime slowdown = number of differences possible.
(With parallel processors, same as unmodified algorithms.)

® Memory-usage: same as unmodified algorithm

3. d is “x% credibility limit” if x% of ensemble is distance < d.

Lee A. Newberg, Webb-Robertson, McCue, Lawrence Global Measures of Uncertainty



Distance Distribution
Credibility vs. Stastical Significance
Sequence Alignments Conclusions

Distance Distribution for Sequence Alignment

Set Solution Space Probability Distribution

For sequences x and y, set probability of an alignment A with
score s(x,Yy,A) to be:

PrlAx, y] oc exp (As(x,y, A))
for some parameter A > 0, e.g., A = In(10)/5.

Modify algorithm: Add scores — multiply exponentiated scores,
“maxs;” — “>_ exp(Asi)”

Choose an Approach

For a 3000 nt x 3000 nt alignment, Fourier is plenty fast. We get
the full, exact distribution of the number of pairing differences.
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Fourier Computation

Computing the distribution for differences from a point estimate:

Algorithm Outline

@ Foreachw € {cos (%) +isin (ZX) k =0,...,n -1}
(nth roots of unity) do
@ Run a modified HBM algorithm: If an HBM transition or
emission implies d differences then multiply by «9.

@ Fourier transform the n results.

Note: Each w can be run on a separate processor.
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Number of Pairing Differences: Centroid vs. Viterbi
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Example #1: Human (1769 nt) x Mouse (1575 nt).
Viterbi=1123 bp, Centroid=1099 bp.

Lee A. Newberg, Webb-Robertson, McCue, Lawrence Global Measures of Uncertainty



Distance Distribution
Credibility vs. Stastical Significance
Sequence Alignments Conclusions

Number of Pairing Differences: Bimodal

0.030

0.025

0.020

0.015

Probability

0.010

0.005

.
0 50 100 150 200

0.000

Credibility Distance

Example #2: Human (1691 nt) x Mouse (2219 nt).
Viterbi=214 bp, Centroid=205 bp.
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Number of Pairing Differences: Rich Structure
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Example #3: Human (1677 nt) x Mouse (1666 nt).
Viterbi=450 bp, Centroid=438 bp.
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95% Relative Credibility vs. Weak p-Value

credibility limit
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Take-Home Points

@ For discrete high-dimensional inferences, point estimates
should be regarded with suspicion.

@ E-values, p-values don't indicate credibility well.

@ Credibility distributions can be calculated / estimated with
reasonable efficiency.

@ The 95% credibility limit is a global measure of
representativeness of a point estimate.

@ Centroids almost always beat Viterbi by this measure.
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