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Hypothesis Testing vs. Credibility Limits

Question: Smith-Waterman alignment with E = 10−40.
It’s a good alignment right?

Answer: No, there is a reasonable chance that sizable
alignment blocks are wrong.

E-Value and p-Value Are for Hypothesis Testing

E , p are small when random data is unlikely to do as well.

Credibility Limits (a.k.a. Bayesian Confidence Limits)

How many differences must be permitted to capture 95% of the
posterior probability?
95% credibility limit is tight if most good solutions are similar.
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Smith-Waterman Alignment
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Individual cases are bad even at superb p-values.
E-values, p-values are a poor proxy for credibility.
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5S RNA Secondary Structure

No single structure represents the ensemble well.
Minimum Free Energy isn’t the best representative.
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Discrete High-Dimensional Inference

Much of computational biology is discrete high-D inference:

Sequence alignment . . . . . . . which residues are matched?

RNA secondary structure . . . . . . . . . . . . . .which bases pair?

Network inference . . . . . . . . . . . . . . . . which edges included?

Nucleosome occupancy . . . .at which sequence positions?

Solution spaces are immense yet we often choose a point
estimate solution.

Today’s goal: Compute a global measure of
representativeness of a point estimate.

Uncertainty of individual features (e.g., bases pairings) —
valuable and important but not our goal.
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Algorithms for Discrete High-Dimensional Inference

Many problems are tackled with dynamic programming:

Hidden Markov Models

Sequence alignment: HMMER

Protein folding: HMMSTR / ROSETTA

Partition Function Computations

RNA secondary structure: Sfold

Viterbi / Maximum Score / Minimum Energy

Seq. Alignment: Smith-Waterman, Needleman-Wunch

RNA secondary structure: Mfold

Collectively, Hidden Boltzmann Models
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Computing / Estimating Credibility

1. If Viterbi: Set solution space probability distribution.
2. Distribution of differences from point estimate via either:

Sampling via HBM Stochastic Backtrace

Draw 1000 samples

Compare to point estimate

Fourier Computation

Exaclty computes probability for each count of differences

Runtime slowdown = number of differences possible.
(With parallel processors, same as unmodified algorithms.)

Memory-usage: same as unmodified algorithm

3. d is “x% credibility limit” if x% of ensemble is distance ≤ d .
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Distance Distribution for Sequence Alignment

Set Solution Space Probability Distribution

For sequences x and y , set probability of an alignment A with
score s(x , y , A) to be:

Pr[A|x , y ] ∝ exp (λs(x , y , A))

for some parameter λ > 0, e.g., λ = ln(10)/5.

Modify algorithm: Add scores → multiply exponentiated scores,
“max si ” → “

∑
exp(λsi)”

Choose an Approach

For a 3000 nt×3000 nt alignment, Fourier is plenty fast. We get
the full, exact distribution of the number of pairing differences.
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Fourier Computation

Computing the distribution for differences from a point estimate:

Algorithm Outline

For each ω ∈ {
cos

(2πk
n

)
+ i sin

(2πk
n

)
, k = 0, . . . , n − 1

}

(nth roots of unity) do
Run a modified HBM algorithm: If an HBM transition or
emission implies d differences then multiply by ωd .

Fourier transform the n results.

Note: Each ω can be run on a separate processor.
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Number of Pairing Differences: Centroid vs. Viterbi
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Example #1: Human (1769 nt) × Mouse (1575 nt).
Viterbi=1123 bp, Centroid=1099 bp.
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Number of Pairing Differences: Bimodal
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Example #2: Human (1691 nt) × Mouse (2219 nt).
Viterbi=214 bp, Centroid=205 bp.
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Number of Pairing Differences: Rich Structure
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Example #3: Human (1677 nt) × Mouse (1666 nt).
Viterbi=450 bp, Centroid=438 bp.
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95% Relative Credibility vs. Weak p-Value

relative credibility limit =
credibility limit

# pairings in Viterbi alignment
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Take-Home Points

For discrete high-dimensional inferences, point estimates
should be regarded with suspicion.
E-values, p-values don’t indicate credibility well.
Credibility distributions can be calculated / estimated with
reasonable efficiency.
The 95% credibility limit is a global measure of
representativeness of a point estimate.
Centroids almost always beat Viterbi by this measure.
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Poster U2: Estimating p-values for arbitrary HMMs / HBMs.
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