Introduction Title Page Methods Hypothesis Test vs. Credibility Limits Sequence Alignments Why We Should Care

Global Measures of Uncertainty Long Overdue in Computational Molecular Biology

Lee A. Newberg^{1,2} Bobbie-Jo M. Webb-Robertson³ Lee Ann McCue³ Charles E. Lawrence⁴

¹Wadsworth Center, New York State Department of Health

²Department of Computer Science, Rensselaer Polytechnic Institute

³Computational Biology and Bioinformatics, Pacific Northwest National Laboratory

⁴Division of Applied Mathematics, Brown University

ISMB / ECCB, July 2, 2009

Introduction Title Page Methods Hypothesis Test vs. Credibility Limits Sequence Alignments Why We Should Care

Hypothesis Testing vs. Credibility Limits

- **Question:** Smith-Waterman alignment with $E = 10^{-40}$. It's a good alignment right?
- **Answer:** No, there is a reasonable chance that sizable alignment blocks are wrong.

E-Value and p-Value Are for Hypothesis Testing

E, p are small when random data is unlikely to do as well.

Credibility Limits (a.k.a. Bayesian Confidence Limits)

How many differences must be permitted to capture 95% of the posterior probability? 95% credibility limit is tight if most good solutions are similar.

Title Page Hypothesis Test vs. Credibility Limits Why We Should Care

Smith-Waterman Alignment

- Individual cases are bad even at superb *p*-values.
- E-values, p-values are a poor proxy for credibility.

Title Page Hypothesis Test vs. Credibility Limits Why We Should Care

5S RNA Secondary Structure

- No single structure represents the ensemble well.
- Minimum Free Energy isn't the best representative.

Discrete High-Dimensional Inference

Much of computational biology is discrete high-D inference:

- Sequence alignment which residues are matched?
- RNA secondary structurewhich bases pair?
- Network inference which edges included?
- Nucleosome occupancyat which sequence positions?

Solution spaces are immense yet we often choose a point estimate solution.

Today's goal: Compute a global measure of representativeness of a point estimate.

Uncertainty of individual features (*e.g.*, bases pairings) — valuable and important but not our goal.

Algorithms for Discrete High-Dimensional Inference

Many problems are tackled with dynamic programming:

Hidden Markov Models

- Sequence alignment: HMMER
- Protein folding: HMMSTR / ROSETTA

Partition Function Computations

RNA secondary structure: Sfold

Viterbi / Maximum Score / Minimum Energy

- Seq. Alignment: Smith-Waterman, Needleman-Wunch
- RNA secondary structure: Mfold

Collectively, Hidden Boltzmann Models

Computing / Estimating Credibility

- 1. If Viterbi: Set solution space probability distribution.
- 2. Distribution of differences from point estimate via either:

Sampling via HBM Stochastic Backtrace

- Draw 1000 samples
- Compare to point estimate

Fourier Computation

- Exactly computes probability for each count of differences
- Runtime slowdown = number of differences possible.
 (With parallel processors, same as unmodified algorithms.)
- Memory-usage: same as unmodified algorithm

3. *d* is "x% credibility limit" if x% of ensemble is distance $\leq d$.

Distance Distribution Credibility vs. Stastical Significance Conclusions

Distance Distribution for Sequence Alignment

Set Solution Space Probability Distribution

For sequences x and y, set probability of an alignment A with score s(x, y, A) to be:

 $\Pr[A|x, y] \propto \exp(\lambda s(x, y, A))$

for some parameter $\lambda > 0$, e.g., $\lambda = \ln(10)/5$.

Modify algorithm: Add scores \rightarrow multiply exponentiated scores, "max s_i " \rightarrow " $\sum \exp(\lambda s_i)$ "

Choose an Approach

For a 3000 nt \times 3000 nt alignment, Fourier is plenty fast. We get the full, exact distribution of the number of pairing differences.

Distance Distribution Credibility vs. Stastical Significance Conclusions

Fourier Computation

Computing the distribution for differences from a point estimate:

Algorithm Outline

- For each $\omega \in \left\{ \cos\left(\frac{2\pi k}{n}\right) + i \sin\left(\frac{2\pi k}{n}\right), k = 0, \dots, n-1 \right\}$ (*n*th roots of unity) do
 - Run a modified HBM algorithm: If an HBM transition or emission implies *d* differences then multiply by ω^d.
- Fourier transform the *n* results.

Note: Each ω can be run on a separate processor.

Introduction Distance Distribution Methods Credibility vs. Stastical Significance Sequence Alignments Conclusions

Number of Pairing Differences: Centroid vs. Viterbi

Example #1: Human (1769 nt) \times Mouse (1575 nt). Viterbi=1123 bp, Centroid=1099 bp.

Introduction Distance Distribution Methods Credibility vs. Stastical Significant Sequence Alignments Conclusions

Number of Pairing Differences: Bimodal

Example #2: Human (1691 nt) \times Mouse (2219 nt). Viterbi=214 bp, Centroid=205 bp.

Introduction Distance Distribution Methods Credibility vs. Stastical Significance Sequence Alignments Conclusions

Number of Pairing Differences: Rich Structure

Example #3: Human (1677 nt) \times Mouse (1666 nt). Viterbi=450 bp, Centroid=438 bp.

Lee A. Newberg, Webb-Robertson, McCue, Lawrence

Global Measures of Uncertainty

Introduction	Distance Distribution
Methods	Credibility vs. Stastical Significance
quence Alignments	Conclusions

Take-Home Points

- For discrete high-dimensional inferences, point estimates should be regarded with suspicion.
- E-values, p-values don't indicate credibility well.
- Credibility distributions can be calculated / estimated with reasonable efficiency.
- The 95% credibility limit is a global measure of representativeness of a point estimate.
- Centroids almost always beat Viterbi by this measure.

References

Sampling: http://dx.doi.org/10.1371/journal.pcbi.1000077
Fourier: http://dx.doi.org/10.1089/cmb.2008.0137
Author: http://www.rpi.edu/~newbel/

Poster U2: Estimating *p*-values for arbitrary HMMs / HBMs.