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GCGAA--CGACGTCAGGCAGA---TCTAGA
CCGAAGCCGA-GCCGGG--AAGCGTGTTGA

m = 25, n = 27

You can do #1, but want to do #2 and #3:

Example: Sequence Alignment

1 For two sequences, of lengths m and n, what is the optimal
alignment A and what is its score S?

2 Is S statistically significant given m and n? — is it unlikely
to arise with random sequences?

3 Is A credible? — are other plausible alignments of these
sequences substantially the same?
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You can do #1, but want to do #2 and #3:

Example: Word Wrapping Text

1 For a paragraph of words, what is the optimal way to divide
them into lines A, and how pretty is it S?
E.g., S = −∑

w2
i , where wi = spaces added to line i

2 Is S unusual? — Is this paragraph of words particularly
hard (or easy) to wrap?

3 Is A special? — are other reasonable word wrappings of
these words similar?
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You can do #1, but want to do #2 and #3:

Problem Statement
1 Optimization: Find and evaluate an optimum using a

dynamic programming algorithm, hidden Markov model, or
partition function calculation.

2 Hypothesis Testing: What is the probability that random
inputs would score as well? Null distribution. p-value.

3 Bayesian Confidence Limits (a.k.a. Credibility Limits):
What fraction of solution space has exactly d differences
from the optimum, for d = 0, . . . , dmax. Difference
distribution.
How many differences must be allowed to capture 95% of
solution space? 95% credibility limit.

Note: Uncertainty of individual features (e.g., a specific
alignment match) is valuable, but not our goal.
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Results: Statistical Significance vs. Score

For Smith & Waterman (1981) sequence alignment, score and
statistical significance are related, but . . .

relationship is non-trivial and depends upon input size.
Protein alignments with indels, BLOSUM62(12, 1)
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Compare: Karlin & Altschul (1990)
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Results: Credibility vs. Statistical Significance

Significance and Bayesian confidence are related, but . . .

poor credibility exists even at superb p-values.
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20 gene promoters of Drosophila melanogaster aligned to
orthologous regions in four other fly genomes.
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Results: Distribution of Differences

For Smith-Waterman sequence alignment, the distribution of
differences can have a rich structure.
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Algorithms for Discrete High-Dimensional Inference

Many problems are tackled with dynamic programming:

Hidden Markov Model

Sequence alignment: HMMER

Protein folding: HMMSTR / ROSETTA

Partition Function Computation / Markov Random Field

RNA secondary structure: Sfold

Viterbi / Maximum Score / Minimum Energy

Seq. Alignment: Smith-Waterman, Needleman-Wunch

RNA secondary structure: Mfold

Collectively, Hidden Boltzmann Models
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Hidden Boltzmann Models

Flipping a biased coin
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A Plan7 Profile-HMM (Eddy, 2003)
Also: Viterbi vs. Forward, Smith & Johnson (2007)
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Estimating Statistical Significance

Naïve Sampling
1 Generate some random examples from the null.
2 Observe the fraction that score as well as your result.

Need O(1/p) samples for a small p-value. �
Importance Sampling

Similar to simulated annealing.
0 Establish a probability model, if absent.
1 Choose a temperature.
2 Generate random samples at the new temperature.
3 Compute temperature-corrected fraction ≥ your result.

Need 100–10,000 samples, even for p = 10−4000. �
Newberg (2008, 2009)
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0. Establish a Probability Model

An emission path through the computation has a . . .

Dynamic programming algorithm: score, computed by addition
of encountered transition and emission scores.

HMM (or Partition function): (unnormalized) probability or odds
ratio, computed by multiplication.

Convert a Dynamic Programming Algorithm To Multiplications

For each score s, instead use an unnormalized probability

Z = exp(λs) .

E.g., λ = ln(10)/5 gives Z �→ 10Z when s �→ s + 5.

Addition of scores → multiplication of Zs.

Maximum of scores → addition of Zs.
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1. Choose a Temperature

Use a reasonable ad hoc procedure to obtain T .

Generally, want 20-60% of instances ≥ your result.

2. Generate Samples

Goal: Instead of from the null, generate input instances from a
temperature-biased distribution.
E.g., generate a pair of sequences (x , y) for alignment.

Watch out: two pages of math headed our way!
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2. Generate Samples

1 Use HMM forward algorithm to sum over paths, but
Use Z 1/T in lieu of each Z .
Also sum out emissions d for each emitter e using

〈
Z 1/T

e

〉
=

∑
d

Ze(d)1/T Prnull(d) .

2 Use HMM backtrace to sample a path, but
Also sample each emission d with probability

Ze(d)1/T Prnull(d)〈
Z 1/T

e

〉 .

Discard the sampled transitions.

Result: An input instance, with bias for higher scores.

Lee A. Newberg Statistical significance and credibility for HMMs / DPAs



Problem Statement and Results
Estimating Statistical Significance

Computing Bayesian Confidence Limits

Establish a Probability Model, If Needed
Choose a Temperature and Generate Samples
Compute Temperature-Corrected Fraction

3. Compute Temperature-Corrected Fraction

Naïve Sampling: For significance of result Z0 (or p0 or s0)

p(Z0) =
∑

all (x ,y)

Prnull(x , y)Θ(Z (x , y) ≥ Z0) ,

where Θ(true) = 1 and Θ(false) = 0.

Importance Sampling

p(Z0) =
∑

all (x ,y)

PrT (x , y)
Prnull(x , y)Θ(Z (x , y) ≥ Z0)

PrT (x , y)

̂p(Z0) =
1
N

∑
(x ,y)∼PrT

Prnull(x , y)Θ(Z (x , y) ≥ Z0)

PrT (x , y)

Done with statistical significance!
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Computing Bayesian Confidence Limits

How do we efficiently compute this (or its cumulative form)?
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Bayesian Confidence Limits

0 Establish a probability model, if absent.
1 Choose an integer difference measure.

Use Sampling Approach (Webb-Robertson et al., 2008), Direct
Approach, Polynomial Approach, or

Fourier Transform Approach

2 Choose a integer (with only small factors) that is a little
larger than the maximum number of differences.

3 Run modified forward algorithm to compute each Fourier
transform coefficient (in parallel).

4 Fourier transform the coefficients.
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Direct Approach

Unaltered Sequence Alignment Algorithm (Simplified)

Algorithm’s typical step looks something like:

Z [i , j] = Z [i − 1, j − 1] ZM(xi , yj) +
Z [i − 1, j] ZD(xi) +

Z [i , j − 1] ZI(yj)

Goal is Z [m, n], where m and n are input strings’ lengths.
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Direct Approach

Recap: Unaltered Algorithm
Z [i , j] = Z [i − 1, j − 1] ZM(xi , yj) +

Z [i − 1, j] ZD(xi) +
Z [i , j − 1] ZI(yj)

Difference Distribution via the Direct Approach

Number of ways to get differences d . Typical step:

Z [i , j , d ] = Z [i − 1, j − 1, d − ΔM(i , j)] ZM(xi , yj) +
Z [i − 1, j , d − ΔD(i)] ZD(xi) +
Z [i , j − 1, d − ΔI(j)] ZI(yj) ,

where Δ is the number of new differences.
Goal is Z [m, n, d ] for all possible total differences d .
Requires increased runtime and memory. �

Lee A. Newberg Statistical significance and credibility for HMMs / DPAs



Problem Statement and Results
Estimating Statistical Significance

Computing Bayesian Confidence Limits

Direct Approach
Polynomial Approach
Fourier Transform Approach

Polynomial Approach

Recap — Difference Distribution via the Direct Approach:
Z [m, n, d ] is number of ways to get score d .

Z [i , j , d ] = Z [i − 1, j − 1, d − ΔM(i , j)] ZM(xi , yj) +
Z [i − 1, j , d − ΔD(i)] ZD(xi) +
Z [i , j − 1, d − ΔI(j)] ZI(yj) .

Difference Distribution via the Polynomial Approach

P[i , j] is a polynomial in indeterminant ω that “packs” the
Z [i , j , d ] values. Define P[i , j] =

∑
d Z [i , j , d ]ωd . Typical step:

P[i , j] = P[i − 1, j − 1] ZM(xi , yj)ωΔM (i,j) +

P[i − 1, j] ZD(xi)ωΔD(i) +

P[i , j − 1] ZI(yj)ωΔI(j) .

Seeking P[m, n] polynomial.
Still increased runtime and memory. �
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Fourier Transform Approach

Recap — Difference Distribution via the Polynomial Approach:
P[m, n] is a polynomial that packs the difference distribution.

P[i , j] = P[i − 1, j − 1] ZM(xi , yj)ωΔM (i,j) +

P[i − 1, j] ZD(xi)ωΔD(i) +

P[i , j − 1] ZI(yj)ωΔI(j) .

Difference Distribution via the Fourier Transform Approach

Can recover coefficients of P[m, n] with via its valuation at
sufficiently many points. Its value for a fixed ω is from:

C[i , j] = C[i − 1, j − 1] ZM(xi , yj)ωΔM (i,j) +

C[i − 1, j] ZD(xi)ωΔD(i) +

C[i , j − 1] ZI(yj)ωΔI(j) .

Coefficients recovery is efficient via Discrete Fourier Transform,
so let {ω0, . . . , ωr−1} be the r th complex roots of unity.
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function ComputeScoreDistribution
for k ∈ {0, . . . , r − 1}

ω = cos(2πk/r) + i sin(2πk/r)
f (k) = BackgroundExec(CalcFourier(ω))

WaitForBackgroundProcesses
return DiscreteFourierTransform(f )

function CalcFourier(ComplexNumber ω)
for i ∈ {0, . . . , m}

for j ∈ {0, . . . , n}
C[i , j] = C[i − 1, j − 1] ZM(xi , yj)ωΔM (xi ,yj ) + C[i − 1, j] ZD(xi)ωΔD(xi )

+ C[i , j − 1] ZI(yj)ωΔI(yj )

return C[m, n]

Serial algorithm has original memory requirement. �
Parallel algorithm has (nearly) original runtime. �
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Concluding Observations

For dynamic programming algorithms, hidden Markov models,
and partition function calculations

. . . optimum score, statistical significance (p-value), and
credibility / Bayesian confidence limits are not fungible.

Solutions

In many cases, if you can optimize score then you can

. . . estimate even a very extreme p-value.

. . . calculate the difference distribution and credibility limits.

Links http://www.rpi.edu/~newbel/publications/

Statistical Significance of sequence alignments: Newberg (2008)
Statistical Significance of hidden Boltzmann models: Newberg (2009)

Credibility: Newberg & Lawrence (2009)
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